
Neural Networks for Data Science Applications
Master’s Degree in Data Science

Lecture 7: Attention-based models

Lecturer: S. Scardapane



Introduction

Applying CNNs to audio



Examples of audio classification

Many real-world problems require the classification of audio samples, e.g.:

1. Speech / non-speech identification (is he/she speaking now?);
2. Language identification (is it Italian?);
3. Genre / mood classification (is it rock?);
4. Determining the leading instrument;
5. Event recognition (is someone shooting?);
6. Scene recognition (are they in a bus? at a restaurant?).

2



Channels and sampling rate

Just like an image is a 2D sequence of pixels, an audio is a 1D sequence
of samples, obtained with a certain sampling rate, typically in one or two
channels.

Figure 1: Simple example of an audio waveform (image source).

3

http://clipart-library.com/clip-art/sound-waves-transparent-background-14.htm


Frame-wise classification

Feature extraction 
(e.g., STFT)

Frame-wise
Classification

Figure 2: A standard workflow for audio classification: (i) extract a
fixed-dimensional frame from the audio (e.g., 400 ms); (ii) extract a vector of
features through frequency analysis; (iii) classify the frame. Frame-wise
predictions can then be aggregated.

4



Spectrogram classification

Feature extraction 
(e.g., STFT)

Convolutional
Neural Network

Frame hop 1 column: 1 frame

1 
ro

w
: 1

 fr
eq

ue
nc

y

Figure 3: By sweeping the feature extractor for all frames, we obtain a
time-frequency representation to be used by a standard CNN architecture.

5



Sequence padding

To work with mini-batching, you still need to zero-pad all dimensions to a
maximum length. For example, you can use padded_batch()with tf.data:

1 im1 = tf.random.normal(shape=(4, 3)) # Image 1 has shape (4, 3)
2 im2 = tf.random.normal(shape=(4, 2)) # Image 2 has shape (4, 2)
3

4 # We need to use from_generator instead of from_tensor_slices
5 data = tf.data.Dataset.from_generator([im1, im2].__iter__,
6 output_types=tf.float64)
7

8 for xb in data.padded_batch(2, padded_shapes=(4, 3)):
9 print(xb) # Zero-padded to (4, 3)

We will see other solutions in future lab sessions.
6



Can we handle the full waveform?

By having sufficient computational power, one can also work on the raw
audio waveform.

When using convolutions, a key idea is the use of dilated convolutions (a.k.a.
atrous convolutions, from French à trous), where neighbours are selected
with exponentially increasing steps.

In this way, the receptive field of an item increases exponentially with the
number of layers.

7



Visualization of a dilated 1D convolution

Dilation = 1

Dilation = 2

Dilation = 4

Figure 4: Example of dilated (atrous) convolution, with increasing dilation for
each layer.

8



Introduction

Applying CNNs to text



Applying convolutive networks to text processing

Text data is another field with a vast range of possible applications, e.g.:

1. Recognition of a topic (is it talking about soccer?);
2. Hate speech recognition (is it respecting our code of conduit?);
3. Sentiment analysis (is it a positive review?);
4. Web page classification (is it an e-commerce website?).

Generative applications are also extremely popular recently.

9



Text tokenization

Classify this text!

Character
tokenizer

['c', 'l', 'a', ..., 't', '!']

Sub-word
tokenizer

['clas', 'si', ..., 'text']

Word
tokenizer

['classifying', 'this', 'text']

Character-
based model

Sub-word-
based model

Word-based
model

Figure 5: Tokenization can be performed at various levels in the sentence, and it
is generally handled by an external library (e.g., Spacy).

10

https://spacy.io/usage/linguistic-features


One-hot encoding

The simplest vectorial embedding for text is a one-hot encoding according
to a predefined dictionary:

I Character-level: each character is represented by a 1-of-C binary
vector, where C is the number of allowable characters.

I Sub-word/word-level: similar, but each word/sub-word is
represented with respect to a fixed vocabulary of sub-words / words.

I Sentence-level: each sentence can be represented by summing the
one-hot encodings for the single tokens (bag-of-words).

11



Dense embeddings

One-hot vectors are very simplistic representations of the information con-
tained in text. Amore general solution is to learn a set of dense embeddings:

1. For every possible token c, initialize randomly a fixed-size vector vc.
2. During training, substitute each token in the sequence with the
corresponding vector (look-up).

3. The set of vectors vc can be optimized together with the parameters of
the neural network by doing gradient descent.

12



Visualizing the embedding procedure

C
o
n
vo
lu
tio
n
a
l	la
ye
r

G
lo
b
a
l	A
ve
ra
g
e
	P
o
o
lin
g

B
a
tch

	n
o
rm
a
liza

tio
n

Original	text
Check	out	this	webpage

Tokenized	text
["check",	"out",	"webpage"]

C
he
ck O
ut

W
eb
pa
ge...

Bo
w
lin
g

Embeddings
lookup table

Embedded	text
3	x	B

C
o
n
vo
lu
tio
n
a
l	la
ye
r

C
o
n
vo
lu
tio
n
a
l	la
ye
r

D
ro
p
o
u
t

Fu
lly-co

n
n
e
cte
d
	la
ye
r

Classification

Figure 6: Using custom embeddings for text classification.

13



Custom embeddings in Keras

Custom embeddings are extremely simple to train within a TensorFlowmodel:

1 model = Sequential()
2

3 # Get embeddings for each token
4 # Input must be (batch_size, max_sentence_length)
5 # Every element of the input is an index [0, ..., dictionary_size-1]
6 model.add(Embedding(dictionary_size, B, input_length=max_sentence_length))
7

8 # Optional: Get average embedding for the sentence
9 model.add(GlobalAveragePooling1D())
10

11 # ...

14



Pre-trained text embeddings

Text embeddings can also be pre-trained using a variety of algorithms:

1. Word2Vec (Mikolov et al., 2013);
2. Global Vectors for Word Representation (GloVe) (Pennington et al.,
2014);

3. Embeddings from Language Models (ELMo) (Peters et al., 2018);
4. Generative Pre-Training (GPT) (Radford et al., 2018);
5. Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al., 2018).

This is a very active research area, currently reaching state-of-the-art results
in a variety of NLP tasks.

15



Multi-head attention layer

Moving beyond convolutional layers



The problem of convolutions

Note how the assumption of localitywemade for convolutional layersmight
not be optimal in all these cases. For text, audio, etc., long-term dependen-
cies can be important.

Until a few years ago, recurrent neural networks (RNNs) were a viable al-
ternative, but because of their structure, they are highly time-consuming to
use. Recently, transformer models have become more common, especially
when trained from huge datasets. In fact, most pre-trained word embed-
dings are built on this architecture.

16



Transformers

The core of the transformer is a new layer called multi-head attention
(MHA). It replaces the assumption of locality with a more general notion
of sparsity of interactions.

The original Transformer (Vaswani et al., 2017), was an encoder-decoder
model for NLP tasks. Today, similar models are gaining interest in audio,
computer vision, biology, etc.

17



Multi-head attention layer

Nadaraya-Watson estimators



A first step: k-NN

To understand the MHA layer and the idea of sparse, consider the famous
k-NN algorithm. Given a dataset (xi, yi), the output of the k-NN (assuming a
regression task) is computed as:

f (x) = 1
k

∑
i∈Nk(x)

yi ,

where Nk(x) returns the k points in the dataset closest to x according to
some distance function d(x, xi). The output of the k-NN is sparse because
it only depends on k points out of the full dataset.

18



Generaling k-NN

The operation of selecting the closest k points is not differentiable, so we
cannot use it in a neural architecture. We consider a simple generalization
over all points:

f (x) =
∑
i

d(x, xi)yi .

For a distance function that decreases fast, this will approximate the k-NN
since most coefficients will be ≈ 0. For example, we can use the Gaussian
distance:

d(x, xi) = exp(−γ‖x− xi‖2) .

19



Nadaraya-Watson estimation

We can constrain the weights to sum to 1 by normalizing them:

f (x) =
∑
i

d(x, xi)∑
j d(x, xj)

yi .

This is an example of a Nadaraya-Watson kernel estimator. Note that if we
substitute the Gaussian distance function we obtain:

f (x) =
∑
i

softmax(−γ‖x− xi‖2)yi .

20



Attention scores

Using the softmax, we can rewrite the previous layer as:

f (x) =
∑
i

softmax (a(x, xi)))yi .

We will call a(·, ·) the attention scoring function, its outputs the unnormal-
ized attention scores, and the output of the softmax the attention scores.

We still need to solve a few issues to have a proper neural layer: the layer
must be composable and have some trainable parameters.

21



Multi-head attention layer

Self-attention layer



Attention layer

The previous model cannot be layered, but we can obtain a composable
variant by using a weighted average of inputs instead of the outputs:

h(x) =
∑
i

softmax(a(x, xi))xi .

We also need to add some trainable parameters to learn via gradient de-
scent:

q = W>
q x︸ ︷︷ ︸

query

, ki = W>
k xi︸ ︷︷ ︸

key

, vi = W>
v xi︸ ︷︷ ︸

value

h(x) =
∑
i

softmax(a(q, ki))vi .

22



Attention layer (2)

To summarize, the input of our layer is a set of n vectors {xi}, which we can
stack into a matrix X

(n,d)
.

If we apply the layer in turn to each element i in the input, we obtain an op-
eration called self-attention, that provides a new vectorial representation
of each input:

Q
(n,q)

= XWq, K
(n,q)

= XWk, V
(n,v)

= XWv

hi =
∑
j

softmax(a(Qi,Kj))Vj .

23



Avoiding some confusion

We started our explanation by considering the k-NN, where each element
of the set is an element of the dataset.

However, the layer is generic for any set of vectors. Below we consider
the application where the input is a set of words (the words composing a
sentence), each represented through a vectorial embedding.

When the layer is applied to a batch of elements, it computes the attention
function independently for every element of the batch (i.e., each sentence
can attend only to words in the same sentence).

24



Visualizing the attention operation

Figure 7: Visualization of the attention operation (book, Chapter 10.3).

25



Dot-product attention

It is common to compute the attention score using a dot-product formula-
tion (because it is extremely efficient):

a(q, k) = q>k
√q

.

In this case, the entire self-attention layer has a particularly easy formula-
tion:

H
(n,v)

= softmax
(
QK>
√q

)
V .

26



Multi-head attention

A common generalization of self-attention is called multi-head attention.
It works by computing i = 1, . . . , k separate sets of keys, querys, and values:

Qi = XWq,i, Ki = XWk,i, Vi = XWv,i

Hi = softmax
(
QiK>

i√q

)
Vi .

Then, we concatenate everything and perform a final linear projection:

H =
[
H1 · · · Hk

]
Wo .

27



Visualizing multi-head attention

Figure 8: Visualization of the multi-head attention operation (book, Chapter 10.5).

28



Multi-head attention layer

The Transformer model



The MHA layer is equivariant to permutations

In audio and text, the ith row of X represents a single time-step or a single
text token (e.g., a word). In a MHA layer, their ordering is lost, because the
layer is equivariant to the ordering (similar to the GAT layer for graphs).

If we multiply X by a permutation matrix P (see the lecture on GNNs), then:

MHA(PX) = P ·MHA(X) .

This is not a good property to have for sequences.

29



Positional embeddings

Before the first MHA layer, we concatenate to the input X a matrix of posi-
tional embeddings E

(n,e)
:

X′ = [X ‖ E] ,

where each row [E]i should uniquely encode the position of every element
of the sequence.

Using this strategy, we ‘break’ the equivariance:

MHA(PX ‖ E) 6= P ·MHA(X ‖ E) .

30



Simple positional embeddings

We can encode the position for a sequence of maximum length p with a
one-hot vector of dimension p, e.g.:

E0 = [1, 0, 0, . . .] , E1 = [0, 1, 0, . . .] , E2 = [0, 0, 1, . . .] , · · · .

Or with a single increasing scalar:

E0 = [0/p] , E1 = [1/p] , E2 = [2/p] , · · · .

Both strategies are not particularly good empirically.

31



Trainable positional embeddings

We can learn the positional embeddings using the tf.keras.layers.Embedding
layer:

I To each position i we associate an embedding vector of fixed
dimension.

I The embeddings are trained with the rest of the network.

Note that we need to fix the maximum length of the sentence. For longer
sentences, we need to linearly interpolate the set of vectors up to a larger
dimension (this is the strategy used in BERT and the Vision Transformer
described below).

32



Sinusoidal embeddings

Consider a single sinusoidal function of frequency ω:

Ei = [sin(iω)] .

We can interpret this as a clock with frequency ω: for two points inside a
single rotation, it will give us their relative distance. For other points, the
distance will be precise modulo the frequency.

33



Multiple sinusoidal embeddings

To uniquely identify any possible position, we can consider multiple sinu-
soids, each with a frequency ωj, j = 1, . . . , e:

Ei = [sin(iω0) , sin(iω1) , . . . , sin(iωe)] .

You can think of this as a clock with e different hands, each rotating at
its own frequency. This is a nice representation because it can possibly
generalize to any length, without the need to impose a maximum length a
priori.

34



Choosing the frequency

An empirically good choice for the frequencies (popularized by (Vaswani et
al., 2017)) is:

ωj =
1

10000j/e
.

For j = 0, this has frequency 2π. For j = e, this has frequency 10000 · 2π. In
the middle, the frequency are increasing at a geometric progression.

To reduce the number of parameters, it is also common to sum the posi-
tional encodings instead of concatenating (in which case the dimension e
is equal to d):

X′ = X+ E .

35



Final version

A popular extension is to alternate sines and cosines of the same frequency:

[E]i,2j = sin

(
i

100002j/e

)
, (1)

[E]i,2j+1 = cos

(
i

100002j/e

)
. (2)

One important property of this encoding is that it is possible to translate
an encoding via matrix multiplication:

[E]i+p = [E]iT(p) for some T(p) .

See https://kazemnejad.com/blog/transformer_architecture_positional_en-
coding/ and references therein. 36

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


Visualizing positional encodings

Figure 9: Visualization of the sinusoidal positional encodings (book, Chapter 10.6).

37



The transformer block

It is common to use the MHA layer inside a more complex block, called the
transformer block, composed of a MHA layer, two layer normalization oper-
ations, two residual connections, and a so-called position-wise network:

1. Start with a MHA layer: H = MHA(X).
2. Add a residual connection and a layer normalization operation:
H = LayerNorm(H+ X).

3. Apply a fully-connected model g(·) on each row: F = g(H).
4. Do again step 2: H = LayerNorm(F+ H).

38



Putting everything together

Figure 10: The final model is built with positional encodings and a stack of n
transformer blocks (adapted from Chapter 10.7 of the book).

39



Classification token

To perform classification or regression, we can apply a final global pooling
on the n tokens and one or more fully-connected layers.

An alternative that is empirically found to work well is the class token, which
is an additional trainable token c added to the input matrix:

X′
(n+1,d)

=

[
X
c>

]
.

The transformermodel is applied to thematrix X′ as input (H = Transformer(X′)),
and classification is performed on its last row:

y = softmax(W>[H]n+1) .
40



Comparing convolutive layers and MHA layers

Figure 11: Adapted from Chapter 10.6 of the book.

41



Computational cost comparison

Consider a 1D convolutional operation H
(n,d)

= Conv1D(X)
(n,d)

with a filter size of

k. Computing the output requires O(nkd2) operations.

Self-attention (with one head) requires O(nd2) for computing keys, queries,
and values, and O(n2d) for computing the output. The n2 term limits the
applicability to long sequences, unless more advanced models are used
(e.g., n < 512 in many text models).

However, a single layer of MHA has a receptive field of n, while the convo-
lutive layer has a receptive field of k.

42



Practical transformer models

Text Transformers



Transformers for contextual embeddings

The majority of pre-trained word embedding models we discussed above
are, in fact, standard transformer models trained on the sequence of text
tokens.

I BERT-like models are pre-trained by masking one word in a sentence,
and reconstructing the full sentence in output.

I GPT-like models are (causal) variants pre-trained to generate the
sequence auto-regressively.

These models are called contextual embeddings because the same word in
different sentences can be encoded to different vectorial representations.

Qiu, X., et al., 2020. Pre-trained models for natural language processing: A survey. Science China Technological
Sciences, pp. 1-26.

43



Self-supervised learning

Because these models are trained from the raw text alone (no specific tar-
gets) they are called self-supervised models (we will cover this more in-
depth later).

Their strengths is that scaling laws for transformers are empirically better
than for other models (i.e., they benefit more from increasing the dataset
by order of magnitude).

In natural language processing, this is also shown by the emergence of
paradigms like text-prompting and zero-shot learning.

44



Foundation models

Figure 12: An emerging name for these huge, pre-trained models is foundation
models.

Bommasani, R., et al., 2021. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258.

45



Encoder-decoder models

The original transformer model was a more general model defined for se-
quence to sequence (seq2seq) tasks, such as machine translation.

Themodel we discussed performs an encoding of the input sequence, which
is then decoded by a second, masked transformer to generate the output
sequence.

Vaswani, A., et al., 2017. Attention is all you need. In Advances in neural information processing systems (pp.
5998-6008).

46



Practical transformer models

Vision & Audio Transformers



Applying transformers on images

One important realization of the last two years is that transformers can
also benefit computer vision, especially when trained on huge datasets (e.g.,
ImageNet21k).

However, this requires to convert the original image (a 2D grid) into a 1D se-
quence (actually, a set together with the positional embeddings). Because
this would scale quadratically in the number of pixels, a common solution
is to work on patches of the original image.

47



Vision Transformer (ViT)

Figure 13: The Vision Transformer (ViT) is a standard transformer applied on top
of image patches.

Dosovitskiy, A., et al., 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929. 48



Mixer models

Figure 14: Mixer models are variants of the ViT, where the MHA is replaced by
fully-connected layers.

Tolstikhin, I., et al., 2021. MLP-Mixer: An all-MLP architecture for vision. arXiv preprint arXiv:2105.01601. 49



Audio transformers

Figure 15: Architectures like Wav2Vec 2.0 are pre-trained audio models exploiting
transformers However, this is harder because of the nature of the audio signal.

Baevski, A., Zhou, H., Mohamed, A. and Auli, M., 2020. wav2vec 2.0: A framework for self-supervised learning of
speech representations. arXiv preprint arXiv:2006.11477. 50



Further readings

I (Mandatory) Chapter 10 of the book.
I (Optional) Chapter 14 for more details on pre-training
transformer-based word embeddings.

I https://jalammar.github.io/illustrated-transformer/.

51


	1
	Introduction
	Applying CNNs to audio
	Applying CNNs to text

	Multi-head attention layer
	Moving beyond convolutional layers
	Nadaraya-Watson estimators
	Self-attention layer
	The Transformer model

	Practical transformer models
	Text Transformers
	Vision & Audio Transformers



