Neural Networks for Data Science Applications
Master’'s Degree in Data Science

Lecture 2: Supervised learning (for vectors)

Lecturer: S. Scardapane

SAPIENZA

UNIVERSITA DI ROMA

Supervised learning

Setup and examples

(Informal) definition of supervised learning

A (supervised) dataset is a set of n examples:

8:{(X17y1)>"'7(xn7yn)} . (1)

Informally, given a ‘new’ pair (x,y) not contained in S, we want a function
f(-) such that:

f(X)=y. (2)
More generally, we test the model on a separate dataset 7 never seen dur-
ing training, i.e, SNT = 0.

Constraints on the dataset

We always assume implicitly that the elements in S and the elements in T
are taken from the same i.i.d, unknown distribution p(x, y).

» Identically distributed: the data-generating process is stable (e.g,
cats in an apartments).

» Independently distributed: there is no bias in the data collection (e.g,
only siamese cats).

If the distribution between S and T varies, we talk about domain shift.

Some motivating examples

1. Spam identification: x; is an email, and y; describes its probability of
being spam.

2. Robot navigation: x; is a sensory representation of the environment,
and y; is a motor command.
3. Text translation: x; is a text and y; its corresponding translation.

4. Product recommendation: x; is a user, and y; its affinity w.rt. a certain
catalogue of products.

Note: ensuring the i.i.d. property sometimes is far from trivial!

Supervised learning

Loss functions

What is a good approximation?

"Il gatto € sul tavolo."

f(x) —> The cat is on the table.

Good translation

—> A cat sitted in table.

— Table sitting cat cats.

Uh?

Introducing loss functions

Given a point x, a desired value y, and a prediction § = f(x), we formalize
its quality with a loss function [(y, ¥), such that:

1. Low value of loss: good approximation;
2. High value of loss: poor approximation.

In this way, learning becomes a problem of minimizing a certain loss quan-
tity that we designed.

Expected risk and empirical risk

The expected loss (risk) of a function f is:

f*(x) = arg min {Ep(x,y) [l(yvf(x))]} . (3)

The expected risk is uncomputable, but can be approximated via empirical
risk minimization:

f*(x) = arg mm{ Zl vi.f } : (4)

The gap between the two approaches is called generalization gap.

Some simplifications

To begin our exploration of supervised learning, we will make a few simpli-
fying assumptions:
» The input x is a vector of shape d.
(d)
» The outputy € R is a single real number.

In this case, a common loss is the squared norm:

Alternative losses are the absolute value |y — §| and the Huber loss.

Linear models

Linear models for regression

What is a linear model?

A linear model f is defined as:

FX) = (w,x) =w'x =) wy, (6)
j

where w is a vector of adaptable parameters.

This model is fundamental in many disciplines, ranging from econometrics
to statistics.

Linear models with bias

A more general formulation considers the inclusion of an offset (bias) b € R:

fX)=w'x+b. (7)

Because we can always rewrite this as w'x, with X = [x; 1], we can avoid
writing the bias explicitly to simplify the notation.

Hint: Everytime we write a linear model, mentally add an offset term when-
ever needed.

10

Graphical representation

Figure 1: Each arrow represents a linear influence on the destination, which sums
the results.

i

Least-squares cost function

Combining the squared loss with a linear model results in the least-squares
optimization problem:

We can vectorize LS as:

where [X]; = x; and |y| = y;.

12

Solving the LS problem

LS is a convex problem, with a simple gradient (normal equations):
VLS(w) = —%xT(y ~ Xw). (10)

However, LS is special in the sense that VLS(w) = 0 is a linear equation that
can be solved explicitly:

w' = (XX) "Xy . (17)
(d,d)” (d,n)(n)

13

Regularizing the LS problem

Numerical problems in the inversion of (X'X) can be solved by adding a
small amount of ¢, regularization (ridge regression):

LS-REG(w) = LS(w) + %||w||2, (12)

for some A > 0. This makes the problem strictly convex and forces the
solution to be contained in a ball of given radius, modifying the gradient
and the explicit solution as:

VLS-REG(W) = VLS(W)+Aw. (13)
w' = (X X+A1) " XTy. (14)

where | is the identity matrix of appropriate shape. 14

Show me some code!

Generating some data:

 # Linear model with unknown coefficients
» X = tf.random.normal((10, 5))
sy = X @ tf.random.normal((5, 1))

Computing a linear model:

1w = tf.random.normal((5, 1))
>yhat = X @ w # (10, 1)

Computing the objective function:

rmse = tf.reduce_sum((y - yhat)x*2)

15

Show me some code (2)!

Explicit solution (numerically unstable):

wopt = tf.linalg.inv(tf.transpose(X) @ X) @ tf.transpose(X) @ vy

Explicit solution (better numerical conditioning):

1wopt = tf.linalg.solve(tf.transpose(X) @ X, tf.transpose(X) @ vy)

Show me some code (3)!

Simple implementation of gradient descent:

 for i in range(15000):
> # Note the sign: the derivative has a minus!
w=w+ 0.001 » tf.transpose(X) @ (y - X @ w)

0 200 400 600 800 1000
Iteration

Linear models

Linear models for classification

Multi-class classification

Another important class of supervised learning problems is classification,
where y is an integer {1,...,c}, such that y; = j means that x; is of class J.

For example, with ¢ = 3 we might have:
» y =1 the email is spam;
» y =2: the email is legit;

» y = 3: the email is dubious.

Solving these as regression tasks is generally not an optimal choice: among
other things, it is not guaranteed that classes have a definite ordering.

Probability distributions

A common solution is to predict a probability distribution over the classes.

A vector a belongs to the probability simplex A. if:
(0)

> lali=1, [a;>0. (15)

i

If f(x) =Y € A, we can interpret it as a probability distribution, e.g., we can
select the class with highest probability as:

class = argmax|[y]; . (16)
i

A comment on differentiability

Note that we cannot directly predict an integer with our models, because
it would require some form of threshold operation which is not compatible
with gradient descent (gradient zero almost everywhere).

Predicting a probability distribution can be seen as a soft approximation to
this problem.

20

The softmax function

The softmax function maps any vector to the probability simplex:

exp (a;)

> exp(a))

The numerator ensures that all outputs are positive, while the denominator
ensures that the final vector sums to 1.

softmax(a)]; = (17)

Our linear model for classification becomes:

f(x) = softmax(W - x) (18)
(c) (c.d) (d)

The pre-softmax values Wx are called the logits of the model.

21

One-hot encoding

In order to compare the predictions with the ground truth, we encode our
targets using a one-hot encoding. Given a pair (X, y):

1 ifxisofclassi,
Yi= _ (19)
0 otherwise.
For example, with 3 classes {cat, dog, other}:
cat =[1,0,0] dog=[0,1,0] other=10,0,1]. (20)

This is a probability distribution putting all the mass on a single class.

22

Cross-entropy loss

Finally, we need a loss function [to compare two probability distributions.

The cross-entropy loss is defined for two vectorsy,y € Ac as:

CE(y,¥) = — Zyi log (V1) - (21)

The cross-entropy can be interpreted as the Kullback-Leibler divergence (a
common distance measure between probability distributions) between y
and y.

23

Logistic regression

A logistic regression is a linear model f(x) = softmax(Wx) trained by
optimizing the cross-entropy:

LR(W) = % 3 CE () (22)

J

It is not possible to solve the logistic regression problem explicitly. A linear
model for classification has dc parameters.

24

Binary classification

A special case is binary classification, where ¢ = 2. In this case, we can
predict a single scalar value f(x) € [0, 1] since:

f(x) probability of class 1, (23)
1—f(x) probability of class 2 . (24)

In this case, the softmax simplifies to the sigmoid function:

The sigmoid o(s) € [0,1] is defined as:

1
~ T+exp(=s)

a(s)

25

Visualizing the sigmoid function

1.0 1

e e I
~ > o

Sigmoid o (s)

o
o

0.0 1

10 5 0 5 10
S
Figure 2: A visualization of the sigmoid function. Note that 0 and 1 are only
approached asymptotically.

Binary logistic regression model

Combining everything, we obtain a binary version of the logistic regression
algorithm:

n

BIN-LR(W) = % S [— yilog ((w"x)) — (1 -y, log (1 - a(wa))J (26)

=1

vV vV
Class 1 Class 2

In this case, we can obtain the most probable class from the model as:

1 ifo(w'x)>0.5,
class = o .) (27)
2 otherwise .

27

Gradient of the logistic regression

By manually differentiating we obtain:
a'(s) = a(s)(1—0o(s)). (28)
Plugging this into the gradient computation we obtain:
,l n
VBIN-LR(w) = — Z(U(WTXI‘) — Yi)Xi, (29)

showing its similarity to the regression case.

28

Implementation

1 from tensorflow.keras.metrics import =
2

3 # The one we have described up to now.
. categorical_crossentropy(ytrue, yhat)

5
s # ytrue should contain the indexes of the classes instead of the

7 # one-hot encodings.
sparse_categorical_crossentropy(ytrue, yhat)

®

o # Numerically-stable versions requiring the logits as inputs

n # (see the LogSumExp trick).

> categorical_crossentropy(ytrue, yhat, from_logits=True)

3 sparse_categorical_crossentropy(ytrue, yhat, from_logits=True)

29

Linear models

Calibration and a probabilistic
formulation

Probabilistic formulation

More formally, for the classification setting we assumed f(x) parameterizes
a probability distribution p(y|f(x)) over the output y. We can always do
this, e.g., for regression:

Py 1f(x) =Ny If(x),0°), (30)

where the model predicts the center of a Gaussian distribution with fixed
variance (hyper-parameter). This probabilistic formulation can be more
flexible or useful in many contexts.

30

Maximum likelihood

The probabilistic formulation also provides a principled way to interpret
training by maximizing the likelihood of the model (assuming the elements
of the dataset are i.i.d.):

f*(x) = argmax [[A(yi|f(x)). (31)

(xi.yi)
For (30), this is equivalent to training with a squared loss. Similarly, training

with cross-entropy is equivalent to assuming a categorical distribution over
the output (can you prove it?).

31

A common misconception when doing classification is that [f(x)]; can be
immediately interpreted as the probability of pattern x being of class i.

However, this is only true whenever the trained model satisfies:

p(y =i|x) = [f(x)];. (32)

We say the model is well calibrated, but this must be checked manually.

Guo, C, et al.. On calibration of modern neural networks. ICML 2017.

32

Measuring calibration

To measure the calibration of a model, we keep a separate validation set,

and we split the interval [0,1] into m equispaced bins (each of size 1/m).
Define:

» B, the number of samples from the validation set, whose predicted
confidence falls in bin m.

» p, the average confidence of the network for that bin.
» a, the average accuracy of the network for these elements.

Then, the expected calibration error (ECE) is given by:
ECE:ZB—mmm—pm]. (33)
— N

33

Calibration plots

Figure 3: Plotting a,, against py, for every bin gives us a reliability plot (from Guo

et al., 2017).

% of Samples

Accuracy

= o ®

)

0.0

0.

e o 9o o =
[S A =)

0

LeNet (1998) ResNet (2016)
CIFAR-100 CIFAR-100

5 4

gl gl

3 é’l

S1- gl

g

(<)

-
1

0 02 04 06 08 1.0 0.

0 02 04 06 08 1.0

I Outputs
== Gap

il Frror=44.9]

Confidence

pfError=30.6

.0
00 02 04 06 08 1.0 0.0 0.2 04 0.6 08 1.0

34

This topic is important because more complex networks may be highly over
(or under) confident, with many methods to improve it (temperature scaling,
logit normalization, ...).

A simple (and popular) option is to decrease the weight given to ‘easy’ sam-
ples using a variant of cross-entropy call the focal loss:

FLa(ya 9) = _('I - S\/c)a IOg S\lc) (34)

where ¢ = arg maxy.

Mukhoti, J., et al,, 2020. Calibrating deep neural networks using focal loss. Advances in Neural Information
Processing Systems, 33, pp. 15288-15299.

35

Visualizing the focal loss

5
CE(p) = — log(py) -0
— 0.
4 FL(p)) = —(1 — p,)" log(pr) y=1
—_2
3r —y=5
173
o

well-classified
examples

00 0.2 0.4 0.6 0.8 1
probability of ground truth class

Figure 1. We propose a novel loss we term the Focal Loss that

adds a factor (1 — p)” to the standard cross entropy criterion.

Setting v > 0 reduces the relative loss for well-classified examples

(p. > .5), putting more focus on hard, misclassified examples. As

Lin, TY, et al,, 2017 Focal loss for dense object detection. In IEEE ICCV (pp. 2980-2988).
36

Reading material

» (Required) Chapter 3 and 4 from the book.

37

	1
	Introduction
	Supervised learning
	Setup and examples
	Loss functions

	Linear models
	Linear models for regression
	Linear models for classification
	Calibration and a probabilistic formulation

