
Modular Deep Learning

Edoardo M. Ponti
eponti@ed.ac.uk

Sapienza, 9 Jun 2023

mailto:eponti@ed.ac.uk

Background and Motivation
Pfeiffer, Jonas, Sebastian Ruder, Ivan Vulić, and Edoardo M. Ponti.

Modular deep learning. arXiv 2023

Emergence of NLP Abilities via Scaling

Credits: Google AI Blog

Zero/few-shot generalisation to new tasks

[Wei et al. 2022]

Challenges of Existing Methods

- Inefficiency due to model size:
time and space complexity

- Negative transfer:
interference (multi-task learning)
catastrophic forgetting (continuous learning)

- Systematic generalisation:
sub-problem recombination
local distribution shifts

Inefficiency due to Model Size

Evolution of the size of large pre-trained models [Treviso et al., 2022]

https://arxiv.org/abs/2209.00099

Negative Transfer

Cosine similarity between gradients for NMT from multiple
languages to English [Wang et al. 2021, Gradient Vaccine].

Systematic Generalisation [Hupkes et al. 2020]

Skill recombination

Disentangling and recombining
autonomous facets of knowledge

Local adaptation

Adapting to local distribution
shifts based on few examples

Modular Deep Learning [Pfeiffer et al. 2023]

Correspondence between modules of a network and the
specialised functions they perform.

Separation between routing (controlling information flow) and
computation (modules).

In multitask learning, modules should specialise for skills,
subproblems common to multiple tasks which can be
recombined or locally updated.

Advantages

● Over in-context learning:
○ Robustness (no instability due to ordering [Zhao et al., 2021],

wording [Webson & Pavlick, 2022], etc.)

○ Higher performance [Brown et al. 2020]

● Over (instruction) fine-tuning:
○ Only positive transfer across tasks (no catastrophic forgetting

and interference) [Caccia et al. 2023]

○ Compositionality, reusability, and local updates of modules:

systematic generalisation [Ponti et al. 2020]

○ Parameter efficiency (no large full-model copies) [Liu et al., 2022]

○ Scaling (e.g., through MoE) [Shazeer et al. 2017]

A Blueprint of Modular Deep Learning

1) Modules

2) Routing

3) Applications

Modules: Parameter-Efficient Fine-Tuning

Parameter Composition Input Composition Function Composition

Modules: Parameter-Efficient Fine-Tuning

Parameter

efficiency

Training

efficiency

Inference

efficiency
Performance

Composition-

ality

Parameter

composition + - ++ + +

Input

composition ++ -- -- - +

Function

Composition - - - ++ +

Performance and Efficiency Comparison

Performance, param efficiency, and memory footprint of different methods on T5-Base (222M params; left)

[Mahabadi et al., 2021] and T5-3B (3B params; right) [Liu et al., 2022]

https://openreview.net/forum?id=bqGK5PyI6-N
https://openreview.net/pdf?id=rBCvMG-JsPd

Routing

Fixed Routing Learned Routing

Hard Learned Routing Soft Learned Routing

Applications

- Zero-shot Cross-lingual Transfer

- Faithful and Abstractive Dialogue Generation

- Few-shot Adaptation to New RL / NLP Tasks

- …and many more (including programme
induction and causal inference / discovery)!

https://www.modulardeeplearning.com

Survey on Modular Deep Learning

Composition of Sparse Adapters
Ansell, Alan, Edoardo M. Ponti, Anna Korhonen, and Ivan Vulić.

Composable Sparse Fine-Tuning for Cross-Lingual Transfer. ACL 2022

Standard Zero-Shot Cross-Lingual Transfer

Step 1:

Pre-train a multilingual model.

Step 2:

Fine-tune the model on a task in a high-resource source language.

Step 3:

Transfer and evaluate the model on a low-resource target language.

Why?

Training data is expensive and not available for many languages, especially ones

that are considered “low-resource”.

Modular Zero-Shot Cross-Lingual Transfer

Step 1: Train Language Adapters

We train language adapters for the source language and the

target language with masked language modelling on Wikipedia.

Step 2: Train a Task Adapter

We train task adapters in the source language stacked on top

of the source language adapter.

Step 3: Zero-Shot transfer to unseen language

We replace the source language adapter with the target

language adapter, while keeping the “language agnostic” task

adapter.

Sparse Fine-Tuning

Lottery Ticket-inspired Algorithm

Results for Zero-shot Transfer

On the Importance of Sparsity

Code
github.com/
cambridgeltl/
composable-sft

Faithful and Abstractive Dialogue
Generation
Daheim, Nico, Nouha Dziri, Mrinmaya Sachan, Iryna Gurevych, and
Edoardo M. Ponti. Elastic Weight Removal for Faithful and Abstractive
Dialogue Generation. arXiv 2023

Knowledge-grounded dialogue generation

Faithfulness (opposite: hallucination)

is the adherence of the generated

response u to the knowledge K

Abstractive (opposite: extractive)

responses u do not copy-paste spans

from knowledge K but rephrase them.

Faithfulness—Abstractiveness Trade-off

Faithfulness can be measured

by a Critic (a binary classifier)

Abstractiveness can be

measured by normalised LCS

(longest common span)

Faithful models generally incur

extractive generation. Can we

have the best of both worlds?

Task Arithmetic
[Ilharco et al. 22]

Step 1: Create task vectors as the

difference between a model fine-tuned on

examples of (positive / negative) behaviour

and a pre-trained model.

Step 2: Add / Subtract task vectors to the

pre-trained model.

Elastic Weight Addition and Subtraction

Limitations of task arithmetic:

1) task vectors may interfere with each other;

2) individual parameters have higher importance than

others in controlling a certain behaviour;

Solution: weight task vectors by Fisher Information f to prevent

interference and represent parameter importance.

Estimating Fisher Information

Empirical and diagonal approximation:

The algorithm

Step 1: Create task vectors

Step 2: Create Fisher vectors

Step 3: Merge

Results

The Sweet Spot

Code

https://github.com/
ndaheim/faithful-dialogue

Polytropon: Joint Routing and Adaptation
Edoardo M. Ponti, Alessandro Sordoni, Yoshua Bengio, Siva Reddy.

Combining Parameter-efficient Modules for Task-level Generalisation.

EACL 23

Goal: adapting general-purpose LLMs
efficiently and systematically to new tasks

An inventory of Modules (=Adapters)

Sparse Adapter [Ansell et al. 2021]Low-rank Adapter [Hu et al. 2021]

Routing: Learned and Variable-size

Polytropon: Discovering Skills End-to-end
Core idea: jointly learn adapters
(modules) and variable-size routing
to fine-tune a LLM.

Adapter 1

Adapter 2

Adapter 3

routing Zmodules 𝚯

ta
sk

s

skills

sk
ill

s

Comparison with Mixture-of-Experts

Polytropon MoEs

Purpose Few-shot

generalisation

Scaling LLMs

with sparsity

Training Fine-tuning Pre-training

Modules Adapters FFNs

Routing Variable-size,

task-level

Top-k,

token-level

Challenges of Learned Routing

● Training Instability

Router and modules are untrained →

routing dynamics never stabilise.

● Underfitting (aka module collapse)

The router falls into a local optimum,

choosing a few modules exclusively

● Overfitting

Risk of overfitting to the noise.

Plots courtesy of

Rosenbaum et al. (2017)

https://arxiv.org/pdf/1904.12774.pdf

Inductive Biases

Indian Buffet Process [Griffiths and
Ghahramani 2011]

Dual-speed Learning Rate

Higher for the routing function
than the module parameters.
Intuition: coarse-to-fine dynamic.

Module collapse [Rosenbaum et al. 2019]
Only a small number of modules from the inventory are selected.

Results from excessively favouring exploitation over exploration.

Instruction Following in RL:
BabyAI [Chevalier-Boisvert et al. 2018]

PICK UP
NAVIGATE ROOM

UNLOCK

Pick up the grey box
behind you, then go to

the green key and
open a door.

Input Actions Skills

Open

GoNextTo(door)

GoNextTo(key)

Drop

PickUp

GoTo(box)

ta
sk

s

skills
Pick up the grey box

behind you, then go to
the green key and

open a door.

Reinforcement Learning Results:
Sample Efficiency

NLP: CrossFit [Ye et al. 2021]

NLP Results:
Few-shot Learning in Unseen Tasks

47

49

51

53

55

57

59

Original Shared Private Expert Hyperformer TaskMoE Polytropon

A
v
e
ra

g
e
 M

e
tr

ic
 o

n
 H

e
ld

-o
u
t
T

a
s
k
s

Interpretability: Task Hierarchy

Conclusions

- Efficient multi-task learning by implementing skills through adapters.

- Inductive biases that encourage module (re)combination, e.g. allowing
for variable-size module routing

- Higher sample efficiency in multi-task reinforcement learning and better
few-shot adaptation in multi-task supervised learning

https://github.com/
microsoft/mttl

Code

Thanks for your attention!

	Slide 1
	Slide 2
	Slide 3: Emergence of NLP Abilities via Scaling
	Slide 4: Zero/few-shot generalisation to new tasks
	Slide 5: Challenges of Existing Methods
	Slide 6: Inefficiency due to Model Size
	Slide 7: Negative Transfer
	Slide 8
	Slide 9: Modular Deep Learning [Pfeiffer et al. 2023]
	Slide 10: Advantages
	Slide 11: A Blueprint of Modular Deep Learning
	Slide 12: Modules: Parameter-Efficient Fine-Tuning
	Slide 13: Modules: Parameter-Efficient Fine-Tuning
	Slide 14: Performance and Efficiency Comparison
	Slide 15: Routing
	Slide 16: Applications
	Slide 17: Survey on Modular Deep Learning
	Slide 18
	Slide 19: Standard Zero-Shot Cross-Lingual Transfer
	Slide 20: Modular Zero-Shot Cross-Lingual Transfer
	Slide 21: Sparse Fine-Tuning
	Slide 22: Lottery Ticket-inspired Algorithm
	Slide 23: Results for Zero-shot Transfer
	Slide 24: On the Importance of Sparsity
	Slide 25: Code
	Slide 26
	Slide 27: Knowledge-grounded dialogue generation
	Slide 28: Faithfulness—Abstractiveness Trade-off
	Slide 29: Task Arithmetic [Ilharco et al. 22]
	Slide 30: Elastic Weight Addition and Subtraction
	Slide 31: Estimating Fisher Information
	Slide 32: The algorithm
	Slide 33: Results
	Slide 34: The Sweet Spot
	Slide 35: Code
	Slide 36
	Slide 37
	Slide 38: An inventory of Modules (=Adapters)
	Slide 39: Routing: Learned and Variable-size
	Slide 40: Polytropon: Discovering Skills End-to-end
	Slide 41: Comparison with Mixture-of-Experts
	Slide 42: Challenges of Learned Routing
	Slide 43: Inductive Biases
	Slide 44: Instruction Following in RL: BabyAI [Chevalier-Boisvert et al. 2018]
	Slide 45: Reinforcement Learning Results: Sample Efficiency
	Slide 46: NLP: CrossFit [Ye et al. 2021]
	Slide 47: NLP Results: Few-shot Learning in Unseen Tasks
	Slide 48: Interpretability: Task Hierarchy
	Slide 49: Conclusions
	Slide 50: Code
	Slide 51

