Modular Deep Learning

Edoardo M. Ponti eponti@ed.ac.uk

Sapienza, 9 Jun 2023

Background and Motivation

Pfeiffer, Jonas, Sebastian Ruder, Ivan Vulić, and Edoardo M. Ponti. *Modular deep learning*. arXiv 2023

Emergence of NLP Abilities via Scaling

Credits: Google AI Blog

Zero/few-shot generalisation to new tasks

Wei et al. 2022

Challenges of Existing Methods

- Inefficiency due to model size: time and space complexity
- Negative transfer:

interference (multi-task learning) catastrophic forgetting (continuous learning)

- Systematic generalisation:

sub-problem recombination local distribution shifts

Inefficiency due to Model Size

Evolution of the size of large pre-trained models [Treviso et al., 2022]

Negative Transfer

Cosine similarity between gradients for NMT from multiple languages to English [Wang et al. 2021, Gradient Vaccine].

Systematic Generalisation [Hupkes et al. 2020]

Disentangling and recombining autonomous facets of knowledge

Skill recombination

Adapting to local distribution shifts based on few examples

Local adaptation

Modular Deep Learning [Pfeiffer et al. 2023]

Correspondence between **modules** of a network and the **specialised functions** they perform.

Separation between **routing** (controlling information flow) and **computation** (modules).

In **multitask learning**, modules should specialise for **skills**, subproblems common to multiple tasks which can be recombined or locally updated.

Advantages

• Over in-context learning:

- Robustness (no instability due to ordering [Zhao et al., 2021], wording [Webson & Pavlick, 2022], etc.)
- Higher performance [Brown et al. 2020]

• Over (instruction) fine-tuning:

- Only **positive transfer** across tasks (no catastrophic **forgetting and interference**) [Caccia et al. 2023]
- Compositionality, reusability, and local updates of modules: systematic generalisation [Ponti et al. 2020]
- Parameter efficiency (no large full-model copies) [Liu et al., 2022]
- Scaling (e.g., through MoE) [Shazeer et al. 2017]

A Blueprint of Modular Deep Learning

Modules: Parameter-Efficient Fine-Tuning

Parameter Composition

Input Composition

Function Composition

$$f_i'(\boldsymbol{x}) = f_{\theta_i \oplus \phi}(\boldsymbol{x})$$

 $f'_i(\boldsymbol{x}) = f_{ heta_i}([\boldsymbol{x}, \phi]) \quad f'_i(\boldsymbol{x}) = f_{ heta_i} \odot f_{\phi}(\boldsymbol{x})$

Modules: Parameter-Efficient Fine-Tuning

Performance and Efficiency Comparison

Performance, param efficiency, and memory footprint of different methods on T5-Base (222M params; left) [Mahabadi et al., 2021] and T5-3B (3B params; right) [Liu et al., 2022]

Applications

- Zero-shot Cross-lingual Transfer
- Faithful and Abstractive Dialogue Generation
- Few-shot Adaptation to New RL / NLP Tasks
- ...and many more (including programme induction and causal inference / discovery)!

Survey on Modular Deep Learning

https://www.modulardeeplearning.com

TALKS Talks related to our survey paper. Modular and Edinburg Parameter-Efficient Modular and Fine-Tuning for NLP Models Sebastian Ruder, Jonas Pfeiffer, Ivan Vulić EMNI P 2022 December 8 2022 Edoardo M. Ponti Google Research Modular and Composable

Modular and Parameter-**Efficient Fine-Tuning for NLP** Models EMNLP 2022 Tutorial

Edoardo M. Ponti @ Microsoft Research Summit 2022

🇱 Mila

Composition of Sparse Adapters

Ansell, Alan, Edoardo M. Ponti, Anna Korhonen, and Ivan Vulić. *Composable Sparse Fine-Tuning for Cross-Lingual Transfer*. ACL 2022

Standard Zero-Shot Cross-Lingual Transfer

Step 1:

Pre-train a multilingual model.

Step 2:

Fine-tune the model on a task in a high-resource source language.

Step 3:

Why?

Transfer and evaluate the model on a low-resource target language.

Training **data** is **expensive** and not available for many languages, especially ones that are considered "low-resource".

Modular Zero-Shot Cross-Lingual Transfer

Step 1: Train Language Adapters

We train **language adapters** for the **source language** and the **target language** with masked language modelling on Wikipedia.

Step 2: Train a Task Adapter

We train task adapters in the source language stacked on top of the source language adapter.

Step 3: Zero-Shot transfer to unseen language

We **replace** the **source** language adapter with the **target** language adapter, while **keeping** the "language agnostic" **task** adapter.

Sparse Fine-Tuning

Lottery Ticket-inspired Algorithm

end function

function CROSSLINGUALTRANSFER($\mathcal{D}_{src}, \mathcal{D}_{tar}, \mathcal{D}_{task}, \mathcal{L}_{task}, \boldsymbol{\theta}^{(0)}, \eta, K$) $\phi_{src} \leftarrow LTSFT(\mathcal{D}_{src}, \mathcal{L}_{MLM}, \boldsymbol{\theta}^{(0)}, \eta, K)$ $\phi_{task} \leftarrow LTSFT(\mathcal{D}_{task}, \mathcal{L}_{task}, \boldsymbol{\theta}^{(0)} + \phi_{src}, \eta, K)$ $\phi_{tar} \leftarrow LTSFT(\mathcal{D}_{tar}, \mathcal{L}_{MLM}, \boldsymbol{\theta}^{(0)}, \eta, K)$ return $\boldsymbol{\theta}^{(0)} + \phi_{task} + \phi_{tar}$ end function

Results for Zero-shot Transfer

On the Importance of Sparsity

UAS score in Maltese DP

Code

github.com/ cambridgeltl/ composable-sft

Language SFTs

Identifiers for language SFTs are of the form cambridgeltl/{base_model}-lang-sft-{lang_code}-small, e.g. cambridgeltl/mbert-lang-sft-en-small. "Small" SFTs have ~7.6M parameters - we may release larger models in the future. Language SFTs are currently available for the following languages/models:

Language	Code	bert-base-multilingual-cased (mbert)	xlm-roberta-base (xlmr)
Acehnese	ace	×	\checkmark
Amharic	amh	×	\checkmark
Arabic	ar	\checkmark	\checkmark
Ashaninka	cni	x	\checkmark
Balinese	ban	×	\checkmark
Bambara	bm	\checkmark	×
Banjarese	bjn	×	\checkmark
Basque	eu	\checkmark	×
Bengali	bn	\checkmark	×
Bribri	bzd	x	\checkmark
Bulgarian	bg	×	\checkmark
Buryat	bxr	\checkmark	×
Cantonese	yue	\checkmark	×
Chinese	zh	\checkmark	\checkmark
Czech	cs	\checkmark	×
English	en	\checkmark	\checkmark
Erzya	myv	\checkmark	×
Estonian	et	\checkmark	×
Faroese	fo	\checkmark	×
French	fr	\checkmark	\checkmark
German	de	\checkmark	\checkmark

Faithful and Abstractive Dialogue Generation

Daheim, Nico, Nouha Dziri, Mrinmaya Sachan, Iryna Gurevych, and Edoardo M. Ponti. *Elastic Weight Removal for Faithful and Abstractive Dialogue Generation*. arXiv 2023

Knowledge-grounded dialogue generation

$$p_{\theta}(u_{T+1} \mid u_1^T, \hat{\mathcal{K}}) = \prod_{n=1}^{N_{T+1}} p_{\theta}([u_{T+1}]_n \mid [u_{T+1}]_1^{n-1}, u_1^T, \hat{\mathcal{K}})$$

Faithfulness (opposite: hallucination) is the adherence of the generated response *u* to the knowledge *K*

Abstractive (opposite: extractive) responses *u* do not copy-paste spans from knowledge *K* but rephrase them. \mathcal{K} : The Flash first appeared in "Showcase" #4 (October 1956) [...] u_T : What comic series is he from?

u_{T+1}	F	Α
He first appeared in "Showcase" #4	×	X
(November 1956).		
He first appeared in "Showcase" #4	1	X
(October 1956).		
His first appearance was in Showcase	1	1
#4 in October 1956.		

Faithfulness—Abstractiveness Trade-off

Faithfulness can be measured by a Critic (a binary classifier)

Abstractiveness can be measured by normalised LCS (longest common span)

Faithful models generally incur extractive generation. Can we have the best of both worlds?

Task Arithmetic [Ilharco et al. 22]

Step 1: Create **task vectors** as the difference between a model fine-tuned on examples of (positive / negative) behaviour and a pre-trained model.

$$\tau_i \triangleq \theta_i - \theta_0$$

Step 2: Add / Subtract task vectors to the pre-trained model.

$$\theta' = \theta_0 + \sum_i \lambda_i \tau_i$$

Elastic Weight Addition and Subtraction

Limitations of task arithmetic:

- 1) task vectors may interfere with each other;
- 2) individual parameters have **higher importance** than others in controlling a certain behaviour;

Solution: weight task vectors by **Fisher Information** *f* to prevent interference and represent parameter importance.

$$\frac{\lambda_0 \cdot f_{\theta_0} \cdot \theta_0 + \sum_{i=1}^N \lambda_i \cdot f_{\tau_i} \cdot \tau_i}{Z}$$

Estimating Fisher Information

$$F_{\theta} = \mathbb{E}_{p_{\theta}(y|x)} \nabla_{\theta} \log p_{\theta}(y \mid x) \nabla_{\theta} \log p_{\theta}(y \mid x)^{\top}$$

Empirical and diagonal approximation:

$$f_{\theta} = \frac{1}{|\mathcal{D}|} \sum_{\mathcal{D}} (\nabla_{\theta} \log p(y \mid x))^2$$

The algorithm

Step 1: Create task vectors

Step 2: Create Fisher vectors

Step 3: Merge

Algorithm 1 Pseudocode for removing hallucinations and promoting abstraction with EWR. Note that we apply $(\cdot)^2$ element-wise.

Input Dialogues \mathcal{D} , hallucinated anti-expert dataset \mathcal{D}^{AE} , abstractive expert dataset \mathcal{D}^{E} , initial parameter set θ Output θ'

$$\begin{split} & \widehat{\boldsymbol{\theta}_{0}} \leftarrow \text{finetune}(\boldsymbol{\theta}, \mathcal{D}) \\ & \widehat{\boldsymbol{\theta}_{AE}} \leftarrow \text{finetune}(\boldsymbol{\theta}_{0}, \mathcal{D}^{AE}) \\ & \widehat{\boldsymbol{\tau}_{1}} \leftarrow \boldsymbol{\theta}_{AE} - \boldsymbol{\theta}_{0} \\ & \widehat{\boldsymbol{\theta}_{E}} \leftarrow \text{finetune}(\boldsymbol{\theta}_{0}, \mathcal{D}^{E}) \\ & \widehat{\boldsymbol{\tau}_{2}} \leftarrow \boldsymbol{\theta}_{E} - \boldsymbol{\theta}_{0} \\ & \widehat{\boldsymbol{\tau}_{2}} \leftarrow \frac{1}{|\mathcal{D}|} \sum_{\mathcal{D}} (\nabla \log p_{\boldsymbol{\theta}_{0}}(u_{T+1} \mid u_{1}^{T}, \hat{\mathcal{K}}))^{2} \\ & \widehat{\boldsymbol{f}_{\boldsymbol{\theta}_{0}}} \leftarrow \frac{1}{|\mathcal{D}|} \sum_{\mathcal{D}} (\nabla \log p_{\boldsymbol{\theta}_{0}}(u_{T+1} \mid u_{1}^{T}, \hat{\mathcal{K}}))^{2} \\ & \widehat{\boldsymbol{f}_{\boldsymbol{\tau}_{1}}} \leftarrow \frac{1}{|\mathcal{D}^{E}|} \sum_{\mathcal{D}^{AE}} (\nabla \log p_{\boldsymbol{\tau}_{1}}(u_{T+1} \mid u_{1}^{T}, \hat{\mathcal{K}}))^{2} \\ & \widehat{\boldsymbol{f}_{\boldsymbol{\tau}_{2}}} \leftarrow \frac{1}{|\mathcal{D}^{E}|} \sum_{\mathcal{D}^{E}} (\nabla \log p_{\boldsymbol{\tau}_{2}}(u_{T+1} \mid u_{1}^{T}, \hat{\mathcal{K}}))^{2} \\ & \widehat{\boldsymbol{\theta}'} \leftarrow \frac{\lambda_{0} \cdot \widehat{\boldsymbol{f}_{\boldsymbol{\theta}_{0}} \cdot \boldsymbol{\theta}_{0} - \lambda_{1} \cdot \widehat{\boldsymbol{f}_{\boldsymbol{\tau}_{1}} \cdot \boldsymbol{\tau}_{1} + \lambda_{2} \cdot \widehat{\boldsymbol{f}_{\boldsymbol{\tau}_{2}} \cdot \boldsymbol{\tau}_{2}}}{Z} \end{split}$$

Results

	BLEU(↑)	$Critic(\downarrow)$	$Q^2(\uparrow)$	BF1(↑)	F1(†)
Model	(y, \hat{y})	$(y, \hat{\mathcal{K}})$			
	WoWunseen				
Flan-T5 _{base}	18.1	22.7	74.0	84.8	78.7
+ TA	18.8	19.2	75.7	82.8	75.0
+ EWR	17.4 (↓-0.7)	17.7 (↓-5.0)	78.4 (†4.4)	86.9 (†2.1)	81.6 (†2.9)
	DSTC11				
Flan-T5 _{base}	7.9	76.6	49.7	54.6	37.1
+ TA	8.0	60.0	51.0	59.9	43.6
+ EWR	9.6 (†1.7)	41.1 (↓35.5)	57.3 (†7.6)	60.0 (†5.4)	38.6 (†1.5)
			FaithDial		
Flan-T5 _{base}	15.1	0.3	66.4	80.9	73.7
+ TA	15.3	0.1	57.5	77.3	67.6
+ EWR	14.9 (4-0.2)	0.1 (↓-0.2)	66.4 (-0.0)	81.7 (↑0.8)	75.0 (†1.3)

Table 2: EWR improves faithfulness on unseen topics (WoW_{unseen}), multi-document corpora (DSTC11), and datasets with cleaned ground-truth annotations (Faith-

Model	WoW			DSTC9		
	A (†)	C (†)	P (†)	A (†)	C (†)	P (†)
Flan-T5 _{base}	72.3	1.74	1.19	89.7	2.83	1.71
+ EWR _{abs}	75.1	1.62	1.25	94.7*	2.41	1.49
CTRL	85.5*	1.58	1.12	94.7*	2.72	1.42
+ TA	88.8*	1.58	1.16	97.0*	2.63	1.40
+ EWR	96.8 [†]	1.50	1.08	98.0 [†]	2.50	1.36
Quark	93.1 [†]	1.51	1.05	86.0	2.89	1.66

Table 3: Human evaluation on 218 examples annotated by 3 expert annotators each. We measure attributability (A), Co-cooperativeness (C), and paraphrasing (P). * indicates significant improvements wrt. Flan-T5_{base} and [†] wrt. to the next best method with p < 0.05.

The Sweet Spot

Code

https://github.com/ ndaheim/faithful-dialogue

document_grounded_generation	(context, knowledge) -> response
document_grounded_generation_ctrl	(context, knowledge, control tokens) -> response
document_grounded_generation_Quark	CTRL tokens as quantized reward for samples drawn from the model during training
noisy_channel_reranking	reranking controllably with a faithfulness and fluency expert
document_grounded_generation_density_ratio	faithfulness expert and anti-expert combined at inference time
document_grounded_generation	task vector subtracted from base model using hallucination anti-expert
document_grounded_generation	task vector subtracted from base model using hallucination anti-expert and faithfulness expert
document_grounded_generation	task vector subtracted from base model using hallucination anti-expert weighted by Fisher Information
	document_grounded_generation document_grounded_generation_ctrl document_grounded_generation_Quark noisy_channel_reranking document_grounded_generation_density_ratio document_grounded_generation document_grounded_generation

Note that TA, CaPE and EWR just change the model parameters via interpolation, but not the model architecture!

Datasets

- 1. Wizard-of-Wikipedia
- 2. FaithDial
- 3. DSTC9
- 4. DSTC11

Metrics

- 1. BLEU
- 2. BERTScore
- 3. Faithfulness Critic
- 4. Q^2
- 5. Knowledge F1
- 6. Density & Coverage

Polytropon: Joint Routing and Adaptation

Edoardo M. Ponti, Alessandro Sordoni, Yoshua Bengio, Siva Reddy. *Combining Parameter-efficient Modules for Task-level Generalisation*. EACL 23

Goal: adapting general-purpose LLMs efficiently and systematically to new tasks

An inventory of Modules (=Adapters)

Low-rank Adapter [Hu et al. 2021]

$$\phi_j = W + A_j^\top B_j$$
$$A, B \in \mathbb{R}^{d \times r} \ r \ll d$$

Sparse Adapter [Ansell et al. 2021]

$$\phi_j = W + A_j$$
$$A \in \mathbb{R}^{d \times d} \text{ is sparse}$$

Routing: Learned and Variable-size

Polytropon: Discovering Skills End-to-end

Core idea: jointly learn *adapters* (modules) and *variable-size* routing to fine-tune a LLM.

$$f'_i(x) = \sum_j \frac{\alpha_j}{Z} f(x; \theta, \phi_j)$$

modules O

skills

Comparison with Mixture-of-Experts

	Polytropon	MoEs
Purpose	Few-shot generalisation	Scaling LLMs with sparsity
Training	Fine-tuning	Pre-training
Modules	Adapters	FFNs
Routing	Variable-size, task-level	Top- <i>k,</i> token-level

Challenges of Learned Routing

• Training Instability

Router and modules are untrained \rightarrow routing dynamics never stabilise.

- Underfitting (aka module collapse) The router falls into a local optimum, choosing a few modules exclusively
- Overfitting

Risk of overfitting to the noise.

Plots courtesy of Rosenbaum et al. (2017)

Inductive Biases

Module collapse [Rosenbaum et al. 2019]

Only a small number of modules from the inventory are selected. Results from excessively favouring *exploitation over exploration*.

Indian Buffet Process [Griffiths and Dual-speed Learning Rate Ghahramani 2011]

Higher for the routing function than the module parameters. Intuition: *coarse-to-fine dynamic*.

Instruction Following in RL: BabyAI [Chevalier-Boisvert et al. 2018]

open a door.

Reinforcement Learning Results: Sample Efficiency

NLP: CrossFit [Ye et al. 2021]

NLP Results: Few-shot Learning in Unseen Tasks

Interpretability: Task Hierarchy

Conclusions

- Efficient multi-task learning by implementing skills through adapters.
- Inductive biases that encourage module (re)combination, e.g. allowing for **variable-size** module **routing**
- Higher sample efficiency in multi-task reinforcement learning and better few-shot adaptation in multi-task supervised learning

Code

https://github.com/ microsoft/mttl

MTTL

MTTL - Multi-Task Transfer Learning

Setup

Install Python packages:

pip install -r requirements.txt

The package prompt source currently requires Python 3.7. Alternative versions require local installations (see their documentation).

Download the datasets:

bash scripts/create_datasets.sh

Multi-task Pre-training

The general command:

python pl_train.py -c \$CONFIG_FILES -k \$KWARGS

Multiple CONFIG_FILES can be concatenated as file1+file2. To modify defaults, KWARGS can be expressed as key=value.

Test Fine-Tuning

To perform finetuning for a test task, use the script pl_finetune.py

Hyper-parameter Search for Test Fine-Tuning

To perform an hyperparameter search for a test task, use the script pl_finetune_tune.py . The script will just call the functions in pl_finetune.py in a loop. The script itself defines hp ranges for different fine-tuning types.

Thanks for your attention!