
Neural Networks for Data Science Applications
Master’s Degree in Data Science

Lecture 10: Transfer learning

Lecturer: J. Pomponi, Post-Doc

Transfer Learning

Introduction

Introduction

Imagine having a small dataset containing images of rare animals, and you
want to create a model capable of classifying them. This is hard because
NNs require tons of data to train correctly...

Or to have a big dataset to train a model with, but your computational re-
sources are limited. How to overcome such limitations?

What if you need to satisfy both?

2

Transfer Learning

We can use pre-trained models to overcome both issues!

We take an already trained model M (e.g. an image classifier trained on
ImageNet), and we take advantage of its weights by adapting them to our
task t, represented by a dataset Dt.

This process can be repeated multiple times.

3

Training

Training

Training
Similarity between tasks

is not strictly required
(but the training must be

changed accordingly)

4

Transfer Learning

is a research problem in machine learning (ML) that focuses on storing
knowledge gained while solving one problem and applying it to a dif-
ferent but related problem.

The easiest way to perform Transfer Learning is by Fine-Tuning the target
model.

5

Transfer Learning

Fine-tuning

Fine-tuning

A model is composed of multiple layers, with the first ones containing low-
level features, and the more you go into the model the higher the level of
the extracted features.

When performing fine-tuning, we want to take advantage of the extraction
ability of a pre-trained model. To do that, we usually substitute the last
layer of the model to adapt it to our new task.

Then, only a subset of the layers is trained.

6

Fine-tuning

layer 1

layer 2

layer L-1

Output layer

layer 1

layer 2

layer L-1

Output layer

Copy
parameters

Copy
parameters

Copy
parameters

Randomly
initialized

Same
parameters,
but learnable

Fixed
parameters

7

Fine tuning: simple code

1. model = library.load_model('ResNet50', pretrained=True)

2. model.classifier = DenseLayer(in_size, num_classes)

3. Train the model on D′

Check this link for a complete implementation from Dive into Deep Learning.

8

http://d2l.ai/chapter_computer-vision/fine-tuning.html

Fine-tuning: training

This approach works because, usually, by looking at the loss surface of a
well-trained model, we see that it relies on a good spot.

To stay as close as possible to this spot, we want to slowly fine-tune the
model (e.g., use a low learning rate), possibly on a task similar to the one
the model was originally trained on.

9

Figure 1: Training loss surfaces of training from scratch (top) and fine-tuning BERT
(bottom) on four datasets. Pre-training leads to wider optima and eases
optimization compared with random initialization [1].

10

Fine-tuning: training

Usually, to preserve the extraction capabilities of a learned model, we train
only a subset of the last layers.

However, also the other layers can be trained, but different techniques must
be implemented to avoid wiping out the learned knowledge.

For example, different learning rates can be assigned to each layer, with the
first ones having a lower learning rate compared to the last ones to preserve
the ability to extract lower-level features.

11

Fine tuning: wrap up

I Tasks must be similar to achieve the best performances.
I Moreover, a low learning rate must be used, to avoid messing up the
model with high gradient steps.

I Fine tuning is easy to implement and manage, but it does not scale
well with the model’s size...

12

PEFT

Parameter Efficient Fine Tuning

PEFT: introduction

Image to have a transformer-based Large Language Model, and you want to
fine-tune it on a custom dataset.

Fine-tuning such models is indeed possible, even when having limited re-
sources [2], but it is not convenient.

Also, consider deploying one LLM for each task you want to solve. Space
and time are crucial in such situations, and we would like to optimize both.

Under these circumstances, fine-tuning is not the best road to take.

13

PEFT: introduction

In the last years, many approaches designed to overcome such issues on
LLM models have been proposed.

A transformer-based model contains many different modules, and, depend-
ing on which one we want to modify, we have different fine-tuning tech-
niques.

In this lecture, we will see some of the most ”famous”.

14

Figure 2: LLMs transfer learning techniques zoo. See [3] for a complete overview
of such methods.

15

PEFT

Soft prompts

Soft prompts: introduction

Prompting

is the process of prepending series of token P, to the input X, such that
the model maximizes the likelihood of the correct Y : Pθ(Y|[P, X]), while
keeping the model parameters θ fixed.

We can take advantage of the zero-shot capabilities of an LLMs [4] to cre-
ate a fine-tuning approach which trains only the input of such models, by
creating a fine-tuned prompt stage that solves a given task.

16

Discrete/hard tuning

The prompt can be manually tuned, but this is sub-optimal, because:

1. It requires a domain expert.
2. Prompts that are considered reasonable for a human are not
necessarily the same for an LLM [5].

3. Pre-trained models are sensitive to the choice of prompts [6].

17

Figure 3: Case study on LLaMA. A single-word change in the prompts could yield
to a drastic difference.

18

Soft prompts: methods

Multiple approaches have been proposed to overcome the limits of discrete
and manual tuning approaches. We will see:

1. Prompt Tuning [7]
2. Prefix Tuning [8]

19

Soft prompts: Prompt Tuning

In contrast to prompt design approaches, which aim to select the best input
tokes from a fixed set having pre-trained parameters, Prompt Tuning adds
a new set of trainable parameters θP to the input of the model.

The new likelihood is Pθ,θP(Y | [P, X]), and it is maximized using standard
training approaches, where only the parameters θP are trained.

It allows a batch to contain samples from multiple tasks, improving the
parallelism.

20

.

21

Figure 4: Prompt tuning matches the quality of model tuning as size increases
while enabling the reuse of a single frozen model for all tasks.

22

Soft prompts: Prefix Tuning

The set of tokens P can be seen as the context of X that helps the model
steer towards the correct output Y . However, there are no guarantees that
such a set exists.

Instead of optimising over discrete tokens, the approach optimizes over the
instruction as continuous word embeddings, whose effects will be propa-
gated upward to all Transformer activation layers and rightward to subse-
quent tokens.

These prefixes are added to each transformer layer.

23

24

Soft prompts: Prompt Tuning vs Prefix Tuning

Transformer
layer 1

Transformer
layer L

Embedding layer Prefix

Transformer
layer 1

Transformer
layer L

Embedding layer Prefix

Prompt Tuning Prefix Tuning

25

Soft prompts: wrap-up

I We have seen that achieving a fine-tuned model by working on the
input level is possible.

I These approaches are fast and easy to implement, even if limited
since the overall model is unchanged.

I The intrinsic limitation of such approaches does not guarantee that
an optimal fine-tuned model can be achieved.

26

PEFT

Adapters-based tuning

Adapters-based tuning: introduction

Adapters-based methods inject small-scale neural modules (adapters) into
transformer layers, and only the parameters of such models are trained.

Although such a strategy leaves an open choice of adapter structures, a
simple instantiation achieves impressive performance and has become the
most widely used baseline in recent research.

One adaptermodule contains, usually, a down-up projection structure which
further reduces the number of trainable parameters.

27

Adapters-based tuning: Adapter

Originally introduced in [9], it is structured as following:

I An Adapter is a module added to a pre-trained model.

I The original model’s weights are fixed, while the adapters are tuned.

I Usually, the adapters are initialized so that, before training, the output
of the adapted model resembles the one from the pre-trained one.

28

Figure 5: The Adapter module and where it is placed within the model.

29

The pros of this approach are:

I it is very effective in multi-task settings.

I it is faster than fine-tuning the whole model.

I multiple adapters can be easily combined [10].

I it can be used to build models which are more robust if compared to
the full-tuning approach [11].

30

But it has also some drawbacks:

I adding new layers could make the inference slower.

I it makes the model larger, increasing the necessity for bigger GPUs.

I multiple Adapters must be processed sequentially, breaking possible
parallelism.

31

Adapters-based tuning: Compacters

Approaches that further reduce the training parameters have also been pro-
posed. For example, a Compacter [12] is an adapter that aims to make the
technique more efficient by reducing the number of parameters.

Adapters are almost fully connected linear layers, while Compacters replace
such layers with a parametrized hypercomplex multiplication layer.

Reducing the number of parameters is not easy, and multiple ”tricks” are
involved, making the approaches less stable.

32

Adapters-based tuning: wrap-up

I We have seen that components can be attached to the trained model.
I With adapters, such components are placed inside transformer layers
and could make the inference slower, as well as break parallelism.

I Adapters can be easily combined, but it significantly increases the
number of parameters.

33

PEFT

Re-Parameterizing a Model

Re-Parameterizing a Model: the intuition

To fine-tune a model is not necessary to change all the parameters, but
only a subset of those. This subset, once fine-tuned, leads to a satisfactory
performance, while keeping the rest of the model as it was.

This means we can reparameterize a subset of the original model parame-
ters with low-dimensional proxy parameters, and just optimize the proxy.

34

Re-Parameterizing a Model: intrinsic dimension

Suppose to have a model with a set of parameters θ with cardinality D = |θ|.

Instead of optimizing all of them, we want to optimize only a subset θs with
|θ| � D.

This is done by, usually, applying a factorization on the parameters of the
model [13].

Many approaches are based on this idea. Here, we will see:

I LoRa [14]
I IA3 [15]

35

LoRA: Low-Rank Adaption

I The idea is based on empirical observations that LLM weights are of
low “intrinsic rank.”

I While the tensors of LLMs are high-dimensional, the information
encoded in them tends to be well-approximated in a much lower
dimension.

I This manifests itself, for example, in a precipitous drop-off of the
singular values calculated using the singular-value decomposition of
the model weights.

36

Consider a weight matrix W0 ∈ Rd×k. The hypothesis tells us this matrix is
low-rank, and so fine-tuning it might also be.

During training, LoRA freezes the original weights, and calculates low-rank
matrices so that:

W0 +∆W = W0 + BA

where B ∈ Rd×r and A ∈ Rr×k, with r > 0 and also r � min(d, k). If training
updates are approximately low-rank, the weights A and B should closely
approximate the true update.

37

Figure 6: The low-rank parametrization proposed by LoRA.
38

The update matrix ∆W can be easily added to a deployed model. It can be
just added to the model before deploying it, resulting in a fine-tuned model
with no additional parameters.

Moreover, multiple ∆Wt, one for each task, can be saved with a small mem-
ory overhead, and attached (addition) or detached (subtraction) when needed.

But where to apply such matrices? And what about the size of r?

39

Figure 7: Validation accuracy on WikiSQL and MultiNLI after applying LoRA to
different types of attention weights in GPT-3, given the same number of trainable
parameters

40

Re-Parameterizing a Model: IA3

it was proposed as an improvement of LoRA, and the main idea is to rescale
inner activations with low-dimensional learned vectors, which are injected
into the module.

It has three goals:

I must allow for mixed-task batches.
I should achieve strong accuracy after training on only a few examples
of new tasks.

I must add or update as few parameters as possible to avoid incurring
storage and memory costs.

41

Figure 8: Left) multiple learnable vectors are added and used to scale various
portion of the model, right) the new loss preventing similarity between different
tasks.

42

Model arithmetic

Merging models

Model arithmetic: introduction

Merging operations between neural networks can be seen as choosing pa-
rameters that approximately maximize the joint likelihood of the posteriors
of the models’ parameters.

Averaging the parameters of multiple models can be seen as Isotropic merg-
ing, where the posterior of each model is approximated with an isotropic
Gaussian distribution.

43

Merging models: wrap-up

I A model can be fine-tuned even without adding new layers.
I Operating directly on the weights reduces the parameters needed and
usually also the training time.

I Depending on the approach, we can have or not parallelism and
multi-task batches.

44

Model arithmetic: introduction

However, this technique does not always lead to good results because there
are no guarantees that multiple models can be correctly merged.

In this section we will see two methods:

1. Fisher-Weighted Averaging [16]
2. Git Re-basin [17]

45

Model arithmetic: Fisher-Weighted Averaging

Proposed in [16], this approach aims to find the best parameters by esti-
mating their importance to the overall loss.

For each parameter, a Fisher importance value is estimated, and twomodels
are merged using a weighted sum of such values.

This leads to better results when compared to fine-tuning and ensembling
while requiring less memory and training time.

46

For each parameter, a Fisher importance value is estimated. Given multiple
models M, these are merged using a weighted sum of such values:

θ
j
=

∑M
i λiF

j
iθ
j
i∑M

i λiF
j
i

where θ
j is the new parameter j, and the Fisher value for the parameter i is

Fj:

Fj = 1
N

N∑
i

E(∇θi log p(y|xi))
2

47

Figure 9: Left: Merging many fine-tuned models as a form of ensembling. Center:
“Robust fine-tuning” [18] (top) and donor task merging [19, 20]. Right: Merging an
intermediate-task trained model with a donor model

48

Model arithmetic: Git Re-basin

Based on the idea that a loss landscape often contains only one basin after
taking into account all the possible symmetries, Git Re-Basin, proposed in
[17], combines multiple models linearly after a selected permutation align-
ment, also proposed in the paper.

49

Figure 10: Git Re-Basin merges models by moving solutions into a single basin.
ΘB is permuted into a functionally equivalent π(ΘB) so that it lies in the same
basin of ΘA.

50

Figure 11: Loss landscapes when interpolating between models trained on MNIST,
CIFAR-10, and ImageNet. The image shows that a linear mode connectivity is
possible after permuting.

51

Model arithmetic

Task arithmetic

Task arithmetic: task vectors

Proposed in [21], task arithmetic is a new paradigm for adapting neural net-
works to new tasks.

This paradigm is based on task vectors, defined as a direction in the weight
space of a pre-trained model towards a space region in which results on a
task are improved.

Such vectors, once obtained, can be added or subtracted, leading to differ-
ent results.

52

Figure 12: First, we calculate the vector as the distance between the pre-trained
model θpre and the fine-tuned version θft, then we can use such vector to modify
a model.

53

However, there are no guarantees that two task vectors will push the model
in a direction in which both are satisfied.

In fact, could happen that the same parameter tries to go in two different
directions for different tasks.

Which one should be taken as the correct direction?

54

Model arithmetic: wrap-up

Task vectors work well and are easy to implement and manage, but modify
all the parameters.

Moreover, it requires fine-tuning the whole model on the current task.

More sophisticated ways of merging the models have been proposed, such
as in [22, 23].

55

Conclusion

Conclusion

In this lecture, we have seen how pre-trained models can be adapted to our
tasks.

Most of the approaches are general and can be adapted to work for CNNs,
even if these approaches make more sense when using very big models
(such as LLMs).

Some resources that help us in fine-tuning LLMs are:

1. OpenAI fine-tuning API (probably based on one of the approaches you
have seen in this lecture)

2. HuggingFace PEFT Library
3. The just released ”Adapters: A Unified Library for Parameter-Efficient
and Modular Transfer Learning” [24].

56

https://platform.openai.com/docs/guides/fine-tuning/fine-tuning-examples
https://platform.openai.com/docs/guides/fine-tuning/fine-tuning-examples
https://github.com/huggingface/peft

THE END
Questions?

57

References i

[1] Yaru Hao et al. “Visualizing and understanding the effectiveness of
BERT”. In: arXiv preprint arXiv:1908.05620 (2019).

[2] Kai Lv et al. “Full Parameter Fine-tuning for Large Language Models
with Limited Resources”. In: arXiv preprint arXiv:2306.09782 (2023).

[3] Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling Down
to Scale Up: A Guide to Parameter-Efficient Fine-Tuning. 2023. arXiv:
2303.15647 [cs.CL].

[4] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Ad-
vances in Neural Information Processing Systems. Vol. 33. Curran Associates,
Inc., 2020, pp. 1877–1901.

58

https://arxiv.org/abs/2303.15647

References ii

[5] Shaohua Wu et al. “Yuan 1.0: Large-scale pre-trained language model
in zero-shot and few-shot learning”. In: arXiv preprint arXiv:2110.04725
(2021).

[6] Xiao Liu et al. “GPT understands, too”. In: AI Open (2023).

[7] Brian Lester, Rami Al-Rfou, and Noah Constant. “The power of scale for
parameter-efficient prompt tuning”. In: arXiv preprint arXiv:2104.08691
(2021).

[8] Xiang Lisa Li and Percy Liang. “Prefix-tuning: Optimizing continuous
prompts for generation”. In: arXiv preprint arXiv:2101.00190 (2021).

59

References iii

[9] Neil Houlsby et al. “Parameter-efficient transfer learning for NLP”. In:
International Conference on Machine Learning. PMLR. 2019, pp. 2790–2799.

[10] Yaqing Wang et al. “AdaMix: Mixture-of-adaptations for parameter-
efficient model tuning”. In: arXiv preprint arXiv:2210.17451 (2022).

[11] Wenjuan Han, Bo Pang, and Yingnian Wu. “Robust transfer learning
with pretrained language models through adapters”. In: arXiv preprint
arXiv:2108.02340 (2021).

[12] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. “Com-
pacter: Efficient low-rank hypercomplex adapter layers”. In: Advances
in Neural Information Processing Systems 34 (2021), pp. 1022–1035.

60

References iv

[13] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. “Intrinsic di-
mensionality explains the effectiveness of languagemodel fine-tuning”.
In: arXiv preprint arXiv:2012.13255 (2020).

[14] Edward J Hu et al. “Lora: Low-rank adaptation of large language mod-
els”. In: arXiv preprint arXiv:2106.09685 (2021).

[15] Chunyuan Li et al. “Elevater: A benchmark and toolkit for evaluating
language-augmented visual models”. In: Advances in Neural Information
Processing Systems 35 (2022), pp. 9287–9301.

61

References v

[16] Michael S Matena and Colin A Raffel. “Merging models with fisher-
weighted averaging”. In: Advances in Neural Information Processing Sys-
tems 35 (2022), pp. 17703–17716.

[17] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. “Git
re-basin: Merging models modulo permutation symmetries”. In: arXiv
preprint arXiv:2209.04836 (2022).

[18] Mitchell Wortsman et al. “Robust fine-tuning of zero-shot models”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 7959–7971.

62

References vi

[19] Jason Phang, Thibault Févry, and Samuel R Bowman. “Sentence en-
coders on stilts: Supplementary training on intermediate labeled-
data tasks”. In: arXiv preprint arXiv:1811.01088 (2018).

[20] Yada Pruksachatkun et al. “Intermediate-task transfer learning with
pretrained models for natural language understanding: When and
why does it work?” In: arXiv preprint arXiv:2005.00628 (2020).

[21] Gabriel Ilharco et al. “Editing models with task arithmetic”. In: arXiv
preprint arXiv:2212.04089 (2022).

63

References vii

[22] Enneng Yang et al. “AdaMerging: Adaptive Model Merging for Multi-
Task Learning”. In: ArXiv abs/2310.02575 (2023). url: https://api.semanticscholar.
org/CorpusID:263620126.

[23] Prateek Yadav et al. “Resolving Interference When Merging Models”.
In: arXiv preprint arXiv:2306.01708 (2023).

[24] Clifton Poth et al. “Adapters: A Unified Library for Parameter-Efficient
and Modular Transfer Learning”. In: arXiv preprint arXiv:2311.11077 (2023).

64

https://api.semanticscholar.org/CorpusID:263620126
https://api.semanticscholar.org/CorpusID:263620126

	Transfer Learning
	Introduction
	Fine-tuning

	PEFT
	Parameter Efficient Fine Tuning
	Soft prompts
	Adapters-based tuning
	Re-Parameterizing a Model

	Model arithmetic
	Merging models
	Task arithmetic

	Conclusion
	

	References
	References

