Neural Networks for Data Science Applications

 Master's Degree in Data Science
Lecture 2: Preliminaries

Lecturer: S. Scardapane

Università di Roma

Preliminaries

Tensors and matrices

For the purpose of this course, a tensor is an n-dimensional array of elements of the same type. ${ }^{a}$

```
a}\mathrm{ Sidenote: in ML, the word tensor is used informally; 'real' tensors are used to describe multilinear relations between spaces.
```

Given a tensor X, it can be indexed using a tuple of n numbers:

$$
\begin{array}{cl}
X & \text { 3-dimensional tensor of shape (h, w, c) } \\
(h, w, c) & \\
X_{i, j, k} & \text { element in position } \left.(i, j, k) \text { (sometimes } X_{i j k}\right) \\
{[X]_{i, j, k}} & \text { alternative notation for indexing }
\end{array}
$$

The argument of the last notation can be an expression, e.g., $[X+Y]_{i, j, k}$.

Tensors are the default data structure in any deep learning framework:
import tensorflow as tf
2 X = tf.random.normal((64, 64, 3)) \# `Random' 3-dimensional tensor
NumPy-like indexing is pervasive (with 0-based indexing):
1 X[0, 0, 0] \# Full indexing
2 X[0] \# Partial indexing (slice of the original tensor)
${ }_{3}$ X[:, 0] \# Partial indexing on the second axis

For homogeneity, we use a similar slicing notation in math:

$$
X_{:, i} \quad \text { 2-dimensional tensor of shape (h, c) }
$$

0-dimensional tensors are called scalars. Most scalars in this course are real-valued, which can be manipulated in a number of ways:

$$
+,-, *, \sin , \cos , \sqrt{ }, \exp ,|\cdot|, \ldots
$$

1-dimensional tensors are vectors and are assumed to be column vectors (and are written in boldface):

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\ldots \\
x_{m}
\end{array}\right), \mathbf{x}^{\top}=\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{m}
\end{array}\right)
$$

Operations on vectors

Real-valued vectors can be linearly combined to give new vectors:

$$
z=a \mathbf{x}+b \mathbf{y},[z]_{i}=a x_{i}+b y_{i} .
$$

The length of a vector is given by its Euclidean norm (ℓ_{2} norm):

$$
\begin{equation*}
\|\mathbf{x}\|^{2}=\sum_{i} x_{i}^{2} \tag{1}
\end{equation*}
$$

The (standard) inner product between two vectors is:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i} x_{i} y_{i}=\mathbf{x}^{\top} \mathbf{y} .
$$

Geometrically, the inner product can be used to compute the angle θ between the two vectors (cosine similarity):

$$
\begin{equation*}
\cos (\theta)=\frac{\langle x, y\rangle}{\|x\|\|y\|} \tag{2}
\end{equation*}
$$

For two orthogonal vectors, $\langle\mathrm{x}, \mathrm{y}\rangle=0$. Otherwise, the cosine similarity oscillates between -1 (opposite vectors) and +1 (aligned vectors).

Euclidean distance can also be defined in terms of inner products:

$$
\|x-y\|_{2}^{2}=\langle x, x\rangle+\langle y, y\rangle-2\langle x, y\rangle .
$$

2-dimensional tensors are matrices:

$$
\mathbf{X}=\stackrel{\left.\begin{array}{cccc}
X_{1,1} & \cdots & \cdots & X_{1, n} \\
\vdots & \ddots & \ddots & \vdots \\
X_{m, 1} & \cdots & \cdots & X_{m, n}
\end{array}\right]}{[\mid}
$$

Matrices can also be interpreted as a stack (batch) of vectors:

$$
\mathrm{X}=\left[\begin{array}{c}
\mathrm{X}_{1} \\
\vdots \\
\mathrm{X}_{m}
\end{array}\right], \quad \mathrm{X}=\left[\begin{array}{lll}
\mathrm{X}_{;, 1} & \ldots & \mathrm{X}_{\mathrm{i}, n}
\end{array}\right]
$$

Like vectors, matrices can be linearly combined: $Z=a X+b Y$.
Geometrically, they represent a linear map between two vector spaces:

$$
\underset{(m)}{\mathbf{b}}=\underset{(m, n)}{\mathbf{W}} \underset{(n)}{\mathbf{a}} .
$$

Matrix multiplication between $\underset{(a, b)}{\mathrm{X}}$ and $\underset{(b, c)}{\mathrm{Y}}$ is defined as:

$$
[X Y]_{i j}=\left\langle X_{i}, Y_{:, j}\right\rangle=\sum_{z} X_{i z} Y_{z j} \in \mathbb{R}^{a \times c}
$$

Multiplication is akin to function composition: $f(x)=(A B)(x)$.

Batching operations

In many cases, writing a batch of operations in terms of matrix multiplications results in an easy and fast implementation (vectorizing), e.g.:

$$
\mathrm{XW}=\left[\begin{array}{c}
\mathrm{X}_{1} \tag{3}\\
\vdots \\
\mathrm{X}_{m}
\end{array}\right] \mathrm{W}=\left[\begin{array}{c}
\mathrm{X}_{1} \mathrm{~W} \\
\vdots \\
\mathrm{X}_{m} \mathrm{~W}
\end{array}\right]
$$

Using a linear algebra library, we can compute m vector-matrix products in parallel with a single efficient instruction. Compilers (e.g., tf.function) can automatically vectorize certain operations.

Another example: XX^{\top} computes all inner products of the form $\left\langle\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right\rangle$ simultaneously.

Batched operations on generic tensors

A 3-dimensional tensor X can also be seen as a stack of a matrices of shape (b, c).

Most operations in TensorFlow (and other deep learning frameworks) are optimized for batching operations across leading dimensions, e.g.:

```
1 X = tf.random.normal((3, 4, 5))
2 Y = tf.random.normal((3, 5, 10))
3 Z = tf.linalg.matmul(X, Y) # Result has shape (3, 4, 10)
```

Some scalar operations extend to the matrix case by generalizing their definition, e.g., the matrix exponential for squared matrices:

$$
\operatorname{mat}-\exp (X)=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}
$$

More commonly, we are interested in applying a scalar operation elementwise, i.e., on each element independently:

$$
\begin{equation*}
[\exp (X)]_{i j}=\exp \left(X_{i j}\right) \tag{4}
\end{equation*}
$$

```
1 X = tf.math.exp(X) # Element-wise exponential
2 X = tf.linalg.expm(X) # Matrix exponential
```

Matrix multiplication can also be performed element-wise, in which case we call it the Hadamard product:

$$
[\mathrm{X} \odot \mathrm{Y}]_{i j}=X_{i j} Y_{i j} .
$$

Finally, sometimes we write operations that look inconsistent:

$$
\begin{equation*}
\underset{(n, m)}{\mathbf{Y}}=\underset{(n, m)}{\mathrm{X}}+\underset{(m)}{\mathrm{a}} \tag{5}
\end{equation*}
$$

This is interpreted as $\mathrm{Y}_{i}=\mathrm{X}_{i}+\mathrm{a}$ (broadcasting), as popularized by NumPy.

$$
\text { np. arange }(3)+5
$$

np. ones $((3,3))+$ np.arange (3)

np. arange(3).reshape ((3,1$))+n$ p. arange (3)

Figure 1: Different examples of broadcasting in NumPy (TF and other frameworks follow similar rules).

Consider the following snippet:

```
a = tf.random.normal((3,))
b = tf.random.normal((3,))
    # Sum of errors squared
    e = tf.reduce_sum((a - b)**2)
    # *WRONG* sum of errors squared
    e = tf.reduce_sum((tf.reshape(a, (3,1))
        - tf.reshape(b, (1,3)))**2)
```

Because of broadcasting, objects of shape (3,), (3,1), or (1,3) are fundamentally different.

Many times, we use reduction operations across one or more axes, e.g.:

$$
\underset{(b, c)}{\mathbf{H}}=\sum_{i}[X]_{i} .
$$

For example, a generalized dot product between two 3-dimensional tensors X_{1} and X_{2} can be written as:

$$
\begin{equation*}
y=\sum_{i, j, k}\left[X_{1} \odot X_{2}\right]_{i, j, k} \tag{6}
\end{equation*}
$$

For vectors and matrices, we can also write reductions using products:

$$
\begin{equation*}
y=\sum_{i}[\mathbf{x}]_{i}=\langle\mathbf{x}, \mathbf{1}\rangle \tag{7}
\end{equation*}
$$

Proper indexing notation can be tricky, especially with > 2 axes. Alternative notations are sometimes used to ease understanding.

For example, named tensors assign proper names to axes:

$$
\begin{aligned}
& \mathrm{X}: \mathbb{R}^{\text {batch } \mathrm{xinput}}, \mathrm{~W}: \mathbb{R}^{\text {output×input }} \\
& \mathrm{y}=\sum_{\text {batch }} \mathrm{XW}^{\top}
\end{aligned}
$$

Both PyTorch and JAX have prototype APIs for handling named tensors.

einsum and einops

Alternatively, a simplified Einstein notation is gaining traction, where repeated indexes are summed over:

$$
\mathrm{Z}_{i j}=\mathrm{X}_{i \mathrm{i}} \mathrm{Y}_{k j}=\sum_{k} \mathrm{X}_{\mathrm{ik}} \mathrm{Y}_{k j}
$$

And indices not appearing on the left are implicitly summed:

$$
\begin{equation*}
\mathrm{z}=\mathrm{x}_{i}=\sum_{i} \mathrm{x}_{i} \tag{8}
\end{equation*}
$$

einsum and einops (2)

Einstein notation is implemented in most frameworks with einsum, using a string that follows the summing convention:

```
1 # This is batched matrix multiplication
2 X = tf.random.normal(shape=[7,5,3])
3 Y = tf.random.normal(shape=[7,3,2])
4 Z = tf.einsum('bij,bjk->bik', X, Y)
```

See https://www.tensorflow.org/api_docs/python/tf/einsum for more examples and https://rockt.github.io/2018/04/30/einsum for a nice introduction.

See einops for a very popular extension of einsum with more functionalities (e.g., patching and more general reductions).

Preliminaries

Derivatives and gradients

Derivative

Most of this course is funded upon the notion of derivative.
The derivative of a function $f(x)$ is defined as:

$$
\begin{equation*}
\partial f(x)=\frac{\partial}{\partial x} f(x)=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} . \tag{9}
\end{equation*}
$$

Even for a continuous function, $\partial f(x)$ might not be defined everywhere.

Informally, the derivative expresses the rate of change of f around an infinitesimal displacement from x, or the slope of the line tangent to $f(x)$.

Derivative of a polynomial:

$$
\partial\left[x^{p}\right]=p x^{p-1} .
$$

Derivative of exponentials and logarithms:

$$
\begin{gathered}
\partial[\exp (x)]=\exp (x), \\
\partial[\log (x)]=\frac{1}{x} .
\end{gathered}
$$

Figure 2: 1D function $\left(f(x)=x^{2}-1.5 x\right)$, showing the derivative at two different locations.

Derivatives possess a number of properties, most notably:

- Linearity:

$$
\partial[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x) .
$$

- Product rule:

$$
\partial[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

- Chain rule

$$
\partial[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x) .
$$

For a function $y=f(x), x \in \mathbb{R}^{m}$, the gradient $\partial f(x)$ is an m-dimensional vector defined as:

$$
\begin{equation*}
[\partial f(\mathrm{x})]_{i}=\frac{\partial y}{\partial \mathrm{x}}=\lim _{h \rightarrow 0} \frac{f\left(\mathrm{x}+h \mathbf{e}_{\mathrm{i}}\right)-f(\mathrm{x})}{h}, \tag{10}
\end{equation*}
$$

where \mathbf{e}_{i} is the i th standard basis vector:

$$
\left[\mathbf{e}_{i}\right] j= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Sometimes we use the alternative notation $\nabla f(\mathrm{x})$.

Directional derivative

More generally, the directional derivative of $f(x)$ in the direction v is:

$$
\begin{equation*}
D_{v} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h v)-f(x)}{h}, \tag{11}
\end{equation*}
$$

It is easy to prove that:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{v}} f(\mathrm{x})=\langle\nabla f(\mathrm{x}), \mathrm{v}\rangle . \tag{12}
\end{equation*}
$$

A partial derivative is a directional derivative in the direction of a standard basis vector.

Gradients and Jacobians

Everything extends to vector-valued functions $\boldsymbol{y}=f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}, \boldsymbol{y} \in \mathbb{R}^{n}$:
The Jacobian $\partial f(\mathbf{x})$ of f is defined as:

$$
\begin{align*}
& (n, m) \\
& \quad \partial f(\mathbf{x})=\left(\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{n}}{\partial x_{1}} & \cdots & \frac{\partial y_{n}}{\partial x_{m}}
\end{array}\right) \tag{13}
\end{align*}
$$

For $n=1$, we recover the gradient, while for $m=n=1$ we recover the standard derivative.

Derivative of the inner product:

$$
\frac{\partial}{\partial \mathbf{x}}\langle\mathrm{x}, \mathrm{y}\rangle=\mathrm{y}
$$

Derivative of a linear map:

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{Ax}=\mathrm{A}
$$

Derivative of a norm:

$$
\partial\|x\|^{2}=2 x .
$$

Properties of the gradients

Jacobians inherit many properties from the scalar case. Importantly, there exists a chain rule for Jacobians. For $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{0} \rightarrow \mathbb{R}^{m}$:

$$
\begin{equation*}
\underset{(n, 0)}{f[f \circ g]}=\underset{(n, m)}{\partial f} \quad \underset{(m, 0)}{\partial g} . \tag{14}
\end{equation*}
$$

In words: the Jacobian of the composition of two functions is the product of their Jacobian matrices.

Given a function $f\left(\mathrm{x}_{0}\right)$ evaluated at x_{0}, then the function:

$$
\begin{equation*}
\tilde{f}(\mathbf{x})=f\left(\mathbf{x}_{0}\right)+\left\langle\partial f\left(\mathbf{x}_{0}\right), \mathbf{x}-\mathbf{x}_{0}\right\rangle \tag{15}
\end{equation*}
$$

is the best linear approximation of f around x_{0} (Taylor's theorem). Better approximations can be constructed from higher-order derivatives, but this is enough for building effective optimization algorithms.

A simple example of using the linear approximation:

```
1 # Function
2f = lambda x: x**2 - 1.5*x
4 # Derivative (manual)
5 df = lambda x: 2*x - 1.5
7 # Linearization at 0.5
8 x = 0.5
f_linearized = lambda h: f(x) + df(x)*(h - x)
11 print(f(x + 0.01)) # -0.5049
12 print(f_linearized(x + 0.01)) # -0.5050
```


Figure 3: 1D function $\left(f(x)=x^{2}-1.5 x\right)$, linearized at 0.5 .

Preliminaries

Numerical optimization

Optimizing a function

We use gradients to solve generic problems of the form:

$$
\begin{equation*}
\mathbf{x}^{*}=\underset{\mathbf{x} \in \mathbb{R}^{d}}{\arg \min } f(\mathbf{x}) \tag{16}
\end{equation*}
$$

This is called unconstrained optimization because the domain is \mathbb{R}^{d}. Note that maximizing/minimizing are equivalent in the sense that:

$$
\begin{equation*}
\mathbf{x}^{*}=\underset{\mathbf{x} \in \mathbb{R}^{d}}{\arg \max } f(\mathbf{x})=\underset{\mathrm{x} \in \mathbb{R}^{d}}{\arg \min }-f(\mathrm{x}) \tag{17}
\end{equation*}
$$

Also, $f(x) \in \mathbb{R}$ (single objective optimization).

A few additional definitions

A point \mathbf{x} such that $f(\mathbf{x}) \leq f\left(\mathbf{x}^{\prime}\right) \forall \mathbf{x}^{\prime} \in \mathbb{R}^{d}$ is called a global minimum. If instead (less restrictive):

$$
\begin{equation*}
f(x) \leq f\left(x^{\prime}\right) \forall x^{\prime} \in\left\{\mathbf{x}^{\prime}:\left\|x^{\prime}-\mathbf{x}\right\|^{2}<\varepsilon\right\} \tag{18}
\end{equation*}
$$

for some $\varepsilon>0$, it is called a local minimum.

If $\nabla f(\mathbf{x})=0, \mathbf{x}$ is called a stationary point. Stationary points can be minima, maxima, or inflection points (aka saddle points).

Figure 4: With no additional information, stationary points can be minima, maxima, and can be local or global (Wikimedia, KSmrq).

Saddle points

Figure 5: Stationary points can also be saddle points, either decreasing or increasing in different directions.

Finding stationary points

Given a randomly initialized x_{0}, consider the following iteration:

$$
\begin{equation*}
\mathbf{x}_{t}=\mathbf{x}_{t-1}+\eta_{t} \mathbf{p}_{t} \tag{19}
\end{equation*}
$$

p_{t} is called a descent direction for $f\left(\mathrm{x}_{\mathrm{t}-1}\right)$ if $f\left(\mathrm{x}_{t}\right)<f\left(\mathrm{x}_{\mathrm{t}-1}\right)$ for a sufficiently small $\eta_{t} . \eta_{t}$ is called step size or learning rate.

Without lack of generality, we restrict to unit directions $\left(\left\|p_{t}\right\|=1\right)$. The rate of change is given by the directional derivative:

$$
\mathrm{D}_{\mathbf{p}_{t}} f\left(\mathbf{x}_{t-1}\right)=\left\langle\nabla f\left(\mathbf{x}_{t-1}\right), \mathbf{p}_{t}\right\rangle=\left\|\nabla f\left(\mathbf{x}_{t-1}\right)\right\| \underbrace{\left\|\mathbf{p}_{t}\right\|}_{=1} \cos (\theta)=\left\|\nabla f\left(\mathbf{x}_{t-1}\right)\right\| \cos (\theta) .
$$

The above quantity is minimized when $\cos (\theta)=-1$, which happens if $\theta=\pi$, i.e., $p_{t}=-\nabla f\left(\mathrm{x}_{t-1}\right)$. This is the steepest descent direction. In general, anything with $\cos (\theta)<0$ is a descent direction.

The resulting algorithm is called gradient descent.
Gradient descent (GD) finds stationary points by iterating:

$$
\begin{equation*}
\mathbf{x}_{t}=\mathbf{x}_{t-1}-\eta_{t} \nabla f\left(\mathbf{x}_{t-1}\right) . \tag{20}
\end{equation*}
$$

Definition of a convex function

Convexity plays a pivotal role in optimization. If a function is convex, its optimization is easier with respect to a non-convex one.
f is said to be convex if for any $\lambda \in[0,1]$:

$$
\begin{equation*}
f\left((1-\lambda) \mathbf{x}_{1}+\lambda \mathbf{x}_{2}\right) \leq(1-\lambda) f\left(\mathbf{x}_{1}\right)+\lambda f\left(\mathbf{x}_{2}\right) . \tag{21}
\end{equation*}
$$

If the equality is strict, we say that f is strictly convex.

Figure 6: Left: an example of convex function. Right: an example of non-convex function. Taken from "An Introduction to Machine Learning" by Smola and Vishwanathan [unpublished].

Consider a generic $f(\mathbf{x})$, and assume GD converges to a point \mathbf{x}^{*}. Then:

- Generic non-convex $f(x)$: The point \mathbf{x}^{*} is stationary.
- Convex $f(x)$: The point \mathbf{x}^{*} is a global optimum.
- Strictly convex $f(\mathrm{x})$: The point \mathbf{x}^{*} is the only global optimum.

For a non-convex function, unless additional assumptions are made on $f(\mathbf{x})$, this result cannot be improved. Finding a global optimum becomes an NPhard problem, akin to evaluating the entire domain of the function.

- D2L: Chapter 2 and parts of Chapter 12; UDL: Appendix B and Chapter 7; PPA: Appendix and Chapter 5.
- Reference textbooks for optimization are Numerical Optimization (Nocedal, J. and Wright, S., 2006), in particular Chapter 2, and Optimization Methods for Large-Scale Machine Learning (Bottou, Curtis, Nocedal, 2016).
- Introduction to named tensors:
https://namedtensor.github.io/.
- To learn more about tensors in science: Tensors in computations (Lim, 2021).

