
Neural Networks for Data Science Applications
Master’s Degree in Data Science

Lecture 2: Preliminaries

Lecturer: S. Scardapane

Preliminaries

Tensors and matrices

Definition of a tensor

For the purpose of this course, a tensor is an n-dimensional array of
elements of the same type.a

aSidenote: in ML, the word tensor is used informally; ‘real’ tensors are used to describe multilinear
relations between spaces.

Given a tensor X, it can be indexed using a tuple of n numbers:

X
(h,w,c)

3-dimensional tensor of shape (h, w, c)

Xi,j,k element in position (i, j, k) (sometimes Xijk)
[X]i,j,k alternative notation for indexing

The argument of the last notation can be an expression, e.g., [X + Y]i,j,k. 2

Tensors in practice

Tensors are the default data structure in any deep learning framework:

1 import tensorflow as tf
2 X = tf.random.normal((64, 64, 3)) # `Random' 3-dimensional tensor

NumPy-like indexing is pervasive (with 0-based indexing):

1 X[0, 0, 0] # Full indexing
2 X[0] # Partial indexing (slice of the original tensor)
3 X[:, 0] # Partial indexing on the second axis

For homogeneity, we use a similar slicing notation in math:

X:,i 2-dimensional tensor of shape (h, c)
3

Scalars and vectors

0-dimensional tensors are called scalars. Most scalars in this course are
real-valued, which can be manipulated in a number of ways:

+,−, ∗, sin, cos,√, exp, |·|, . . .

1-dimensional tensors are vectors and are assumed to be column vectors
(and are written in boldface):

x =

x1
x2
. . .

xm

 , x> =
(
x1 x2 . . . xm

)

4

Operations on vectors

Real-valued vectors can be linearly combined to give new vectors:

z = ax+ by , [z]i = axi + byi .

The length of a vector is given by its Euclidean norm (`2 norm):

‖x‖2 =
∑
i

x2i . (1)

The (standard) inner product between two vectors is:

〈x, y〉 =
∑
i

xiyi = x>y .

5

Inner product and cosine similarity

Geometrically, the inner product can be used to compute the angle θ be-
tween the two vectors (cosine similarity):

cos(θ) =
〈x, y〉
‖x‖‖y‖ . (2)

For two orthogonal vectors, 〈x, y〉 = 0. Otherwise, the cosine similarity os-
cillates between −1 (opposite vectors) and +1 (aligned vectors).

Euclidean distance can also be defined in terms of inner products:

‖x− y‖22 = 〈x, x〉+ 〈y, y〉 − 2〈x, y〉 .

6

Matrices

2-dimensional tensors are matrices:

X =

X1,1 X1,n

Xm,1 Xm,n

 m
row

s

n columns

Matrices can also be interpreted as a stack (batch) of vectors:

X =

X1...
Xm

 , X =
[
X:,1 . . . X:,n

]
7

Matrix multiplication

Like vectors, matrices can be linearly combined: Z = aX+ bY.

Geometrically, they represent a linear map between two vector spaces:

b
(m)

= W
(m,n)

a
(n)

.

Matrix multiplication between X
(a,b)

and Y
(b,c)

is defined as:

[XY]ij = 〈Xi, Y:,j〉 =
∑
z

XizYzj ∈ Ra×c .

Multiplication is akin to function composition: f (x) = (AB) (x). 8

Batching operations

In many cases, writing a batch of operations in terms of matrix multiplica-
tions results in an easy and fast implementation (vectorizing), e.g.:

XW =

X1...
Xm

W =

X1W...
XmW

 (3)

Using a linear algebra library, we can compute m vector-matrix products in
parallel with a single efficient instruction. Compilers (e.g., tf.function)
can automatically vectorize certain operations.

Another example: XX> computes all inner products of the form 〈Xi, Xj〉 si-
multaneously.

9

Batched operations on generic tensors

A 3-dimensional tensor X
(a,b,c)

can also be seen as a stack of a matrices of

shape (b, c).

Most operations in TensorFlow (and other deep learning frameworks) are
optimized for batching operations across leading dimensions, e.g.:

1 X = tf.random.normal((3, 4, 5))
2 Y = tf.random.normal((3, 5, 10))
3 Z = tf.linalg.matmul(X, Y) # Result has shape (3, 4, 10)

10

Matrix vs. element-wise operations

Some scalar operations extend to the matrix case by generalizing their def-
inition, e.g., the matrix exponential for squared matrices:

mat-exp(X) =
∞∑
k=0

1
k!
Xk .

More commonly, we are interested in applying a scalar operation element-
wise, i.e., on each element independently:

[exp(X)]ij = exp(Xij) (4)

1 X = tf.math.exp(X) # Element-wise exponential
2 X = tf.linalg.expm(X) # Matrix exponential

11

Hadamard product and broadcasting

Matrix multiplication can also be performed element-wise, in which case we
call it the Hadamard product:

[X� Y]ij = XijYij .

Finally, sometimes we write operations that look inconsistent:

Y
(n,m)

= X
(n,m)

+ a
(m)

(5)

This is interpreted as Yi = Xi + a (broadcasting), as popularized by NumPy.

12

Broadcasting rules

Figure 1: Different examples of broadcasting in NumPy (TF and other frameworks
follow similar rules).

13

A common mistake

Consider the following snippet:

1 a = tf.random.normal((3,))
2 b = tf.random.normal((3,))
3

4 # Sum of errors squared
5 e = tf.reduce_sum((a - b)**2)
6

7 # *WRONG* sum of errors squared
8 e = tf.reduce_sum((tf.reshape(a, (3,1))
9 - tf.reshape(b, (1,3)))**2)

Because of broadcasting, objects of shape (3,), (3,1), or (1,3) are fundamen-
tally different.

14

Reduction operations

Many times, we use reduction operations across one or more axes, e.g.:

H
(b,c)

=
∑
i

[X]i
(a,b,c)

.

For example, a generalized dot product between two 3-dimensional tensors
X1 and X2 can be written as:

y =
∑
i,j,k

[X1 � X2]i,j,k . (6)

For vectors and matrices, we can also write reductions using products:

y =
∑
i

[x]i = 〈x, 1〉 . (7)
15

Named tensors

Proper indexing notation can be tricky, especially with > 2 axes. Alternative
notations are sometimes used to ease understanding.

For example, named tensors assign proper names to axes:

X : Rbatch×input,W : Routput×input

y =
∑
batch

XW>

Both PyTorch and JAX have prototype APIs for handling named tensors.

16

einsum and einops

Alternatively, a simplified Einstein notation is gaining traction, where re-
peated indexes are summed over:

Zij = XikYkj =
∑
k

XikYkj

And indices not appearing on the left are implicitly summed:

z = xi =
∑
i

xi (8)

17

einsum and einops (2)

Einstein notation is implemented in most frameworks with einsum, using
a string that follows the summing convention:

1 # This is batched matrix multiplication
2 X = tf.random.normal(shape=[7,5,3])
3 Y = tf.random.normal(shape=[7,3,2])
4 Z = tf.einsum('bij,bjk->bik', X, Y)

See https://www.tensorflow.org/api_docs/python/tf/einsum
formore examples and https://rockt.github.io/2018/04/30/einsum
for a nice introduction.

See einops for a very popular extension of einsum with more functionalities
(e.g., patching and more general reductions).

18

https://www.tensorflow.org/api_docs/python/tf/einsum
https://rockt.github.io/2018/04/30/einsum
https://github.com/arogozhnikov/einops

Preliminaries

Derivatives and gradients

Derivative

Most of this course is funded upon the notion of derivative.

The derivative of a function f (x) is defined as:

∂f (x) = ∂

∂x
f (x) = f ′(x) = lim

h→0

f (x + h)− f (x)
h

. (9)

Even for a continuous function, ∂f (x) might not be defined every-
where.

Informally, the derivative expresses the rate of change of f around an in-
finitesimal displacement from x, or the slope of the line tangent to f (x).

19

Examples of derivatives

Derivative of a polynomial:

∂ [xp] = pxp−1 .

Derivative of exponentials and logarithms:

∂ [exp(x)] = exp(x) ,

∂ [log(x)] = 1
x
.

20

Visualizing derivatives in the 1D case

−2.5 0.0 2.5 5.0 7.5 10.0
x

0

20

40

60

80

f
(x

)
∂f (x) < 0

∂f (x) > 0

Figure 2: 1D function (f (x) = x2 − 1.5x), showing the derivative at two different
locations.

21

Properties of derivatives

Derivatives possess a number of properties, most notably:

I Linearity:
∂
[
f (x) + g(x)

]
= f ′(x) + g′(x) .

I Product rule:

∂
[
f (x)g(x)

]
= f ′(x)g(x) + f (x)g′(x) ,

I Chain rule
∂
[
f (g(x))

]
= f ′(g(x))g′(x) .

22

Gradient

For a function y = f (x), x ∈ Rm, the gradient ∂f (x) is an m-dimensional
vector defined as:

[∂f (x)]i =
∂y
∂x = lim

h→0

f (x+ hei)− f (x)
h

, (10)

where ei is the ith standard basis vector:

[ei]j =

1 if i = j
0 otherwise

Sometimes we use the alternative notation ∇f (x).

23

Directional derivative

More generally, the directional derivative of f (x) in the direction v is:

Dvf (x) = lim
h→0

f (x+ hv)− f (x)
h

, (11)

It is easy to prove that:
Dvf (x) = 〈∇f (x), v〉 . (12)

A partial derivative is a directional derivative in the direction of a standard
basis vector.

24

Gradients and Jacobians

Everything extends to vector-valued functions y = f (x), x ∈ Rm, y ∈ Rn:

The Jacobian ∂f (x)
(n,m)

of f is defined as:

∂f (x) =

∂y1
∂x1 . . . ∂y1

∂xm...
∂yn
∂x1 . . . ∂yn

∂xm

 . (13)

For n = 1, we recover the gradient, while for m = n = 1 we recover the
standard derivative.

25

Examples of matrix derivatives

Derivative of the inner product:

∂

∂x〈x, y〉 = y .

Derivative of a linear map:
∂

∂xAx = A .

Derivative of a norm:
∂‖x‖2 = 2x .

See the matrix cookbook for reference:
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.

26

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Properties of the gradients

Jacobians inherit many properties from the scalar case. Importantly, there
exists a chain rule for Jacobians. For f : Rm → Rn and g : Ro → Rm:

∂ [f ◦ g]
(n,o)

= ∂f
(n,m)

◦ ∂g
(m,o)

. (14)

In words: the Jacobian of the composition of two functions is the product
of their Jacobian matrices.

27

First-order approximation

Given a function f (x0) evaluated at x0, then the function:

f̃ (x) = f (x0) + 〈∂f (x0), x− x0〉 (15)

is the best linear approximation of f around x0 (Taylor’s theorem). Better
approximations can be constructed from higher-order derivatives, but this
is enough for building effective optimization algorithms.

28

Example of use

A simple example of using the linear approximation:

1 # Function
2 f = lambda x: x**2 - 1.5*x
3

4 # Derivative (manual)
5 df = lambda x: 2*x - 1.5
6

7 # Linearization at 0.5
8 x = 0.5
9 f_linearized = lambda h: f(x) + df(x)*(h - x)
10

11 print(f(x + 0.01)) # -0.5049
12 print(f_linearized(x + 0.01)) # -0.5050

29

Visualizing the approximation

−1.0 −0.5 0.0 0.5 1.0
x

0

1

2

f
(x

)

f(x)

Linearized at 0.5

Figure 3: 1D function (f (x) = x2 − 1.5x), linearized at 0.5.

30

Preliminaries

Numerical optimization

Optimizing a function

We use gradients to solve generic problems of the form:

x∗ = argmin
x∈Rd

f (x) (16)

This is called unconstrained optimization because the domain is Rd. Note
that maximizing/minimizing are equivalent in the sense that:

x∗ = argmax
x∈Rd

f (x) = argmin
x∈Rd

−f (x) (17)

Also, f (x) ∈ R (single objective optimization).

31

A few additional definitions

A point x such that f (x) ≤ f (x′) ∀ x′ ∈ Rd is called a global minimum.
If instead (less restrictive):

f (x) ≤ f (x′) ∀ x′ ∈
{
x′ : ‖x′ − x‖2 < ε

}
(18)

for some ε > 0, it is called a local minimum.

If ∇f (x) = 0, x is called a stationary point. Stationary points can be
minima, maxima, or inflection points (aka saddle points).

32

Types of stationary points

Figure 4: With no additional information, stationary points can be minima,
maxima, and can be local or global (Wikimedia, KSmrq).

33

Saddle points

θ

J
(θ

)
Saddle point
(neither minimum
nor maximum)

Figure 5: Stationary points can also be saddle points, either decreasing or
increasing in different directions.

34

Finding stationary points

Given a randomly initialized x0, consider the following iteration:

xt = xt−1 + ηtpt . (19)

pt is called a descent direction for f (xt−1) if f (xt) < f (xt−1) for a suffi-
ciently small ηt. ηt is called step size or learning rate.

35

Descent direction

Without lack of generality, we restrict to unit directions (‖pt‖ = 1). The rate
of change is given by the directional derivative:

Dptf (xt−1) = 〈∇f (xt−1),pt〉 = ‖∇f (xt−1)‖ ‖pt‖︸︷︷︸
=1

cos(θ) = ‖∇f (xt−1)‖ cos(θ).

The above quantity is minimized when cos(θ) = −1, which happens if θ = π,
i.e., pt = −∇f (xt−1). This is the steepest descent direction. In general,
anything with cos(θ) < 0 is a descent direction.

36

Gradient descent

The resulting algorithm is called gradient descent.

Gradient descent (GD) finds stationary points by iterating:

xt = xt−1 − ηt∇f (xt−1) . (20)

37

Definition of a convex function

Convexity plays a pivotal role in optimization. If a function is convex, its
optimization is easier with respect to a non-convex one.

f is said to be convex if for any λ ∈ [0, 1]:

f
(
(1− λ)x1 + λx2

)
≤ (1− λ)f (x1) + λf (x2) . (21)

If the equality is strict, we say that f is strictly convex.

38

Convex vs. non-convex functions

Figure 6: Left: an example of convex function. Right: an example of non-convex
function. Taken from “An Introduction to Machine Learning” by Smola and
Vishwanathan [unpublished].

39

Notable results on gradient descent

Consider a generic f (x), and assume GD converges to a point x∗. Then:

I Generic non-convex f (x): The point x∗ is stationary.
I Convex f (x): The point x∗ is a global optimum.
I Strictly convex f (x): The point x∗ is the only global optimum.

For a non-convex function, unless additional assumptions are made on f (x),
this result cannot be improved. Finding a global optimum becomes an NP-
hard problem, akin to evaluating the entire domain of the function.

40

Reading material

I D2L: Chapter 2 and parts of Chapter 12; UDL: Appendix B and Chapter 7;
PPA: Appendix and Chapter 5.

I Reference textbooks for optimization are Numerical Optimization
(Nocedal, J. and Wright, S., 2006), in particular Chapter 2, and
Optimization Methods for Large-Scale Machine Learning (Bottou,
Curtis, Nocedal, 2016).

I Introduction to named tensors:
https://namedtensor.github.io/.

I To learn more about tensors in science: Tensors in computations
(Lim, 2021).

41

https://namedtensor.github.io/

	1
	Preliminaries
	Tensors and matrices
	Derivatives and gradients
	Numerical optimization

