
Neural Networks for Data Science Applications
Master’s Degree in Data Science

Lecture 3: Linear regression and classification

Lecturer: S. Scardapane

Supervised learning

Setup and examples

(Informal) definition of supervised learning

A (supervised) dataset is a set of n examples:

S = {(x1, y1), . . . , (xn, yn)} . (1)

Informally, given a ‘new’ pair (x, y) not contained in S , we want a function
f (·) such that:

f (x) ≈ y . (2)

More generally, we can test the model on a separate dataset T never seen
during training, i.e., S

⋂
T = ∅.

2

Constraints on the dataset

We always assume implicitly that the elements in S and the elements in T
are taken from the same i.i.d, unknown distribution p(x, y).

I Identically distributed: the data-generating process is stable (e.g., in
recognizing cats, the distribution of species do not change).

I Independently distributed: there is no bias in the data collection (e.g.,
we mostly collect siamese cats).

If the distribution between S and T varies, we talk about domain shift.

3

Some motivating examples

1. Spam identification: xi is an email, and yi describes its probability of
being spam.

2. Robot navigation: xi is a sensory representation of the environment,
and yi is a motor command.

3. Text translation: xi is a text and yi its corresponding translation.
4. Product recommendation: xi is a user, and yi its affinity w.r.t. a certain
catalogue of products.

Note: ensuring the i.i.d. property sometimes is far from trivial!

4

Supervised learning

Loss functions

What is a good approximation?

"Il gatto è sul tavolo."

The cat is on the table.

A cat sitted in table.

Table sitting cat cats.

f(x)
Good translation

Still understandable

Uh?

5

Introducing loss functions

Given a point x, a desired value y, and a prediction ŷ = f (x), we formalize
its quality with a loss function l(y, ŷ), such that:

1. Low value of loss: good approximation;
2. High value of loss: poor approximation.

In this way, learning becomes a problem of minimizing a certain loss quan-
tity that we designed. Importantly, the loss function should be a scalar, vary
gradually, and (as we will see) be differentiable.

6

Expected risk and empirical risk

The expected loss (risk) of a function f is:

f ∗(x) = argmin
{
Ep(x,y) [l(y, f (x))]

}
. (3)

The expected risk is uncomputable, but can be approximated via empirical
risk minimization:

f ∗(x) = argmin
f

{
1
n

n∑
i=1

l(yi, f (xi))
}

. (4)

The gap between the two approaches is called generalization gap.

7

Overfitting

Consider the following algorithm (a variation of 1-NN):

f (x) =

y if (x, y) ∈ S ,

0 otherwise .
(5)

This has 0 training error by construction, but a very large test error: this
is an example of overfitting. We will see that (large) neural networks have
many counter-intuitive properties when it comes to generalization.

8

Some simplifications

To begin our exploration of supervised learning, we will make a few simpli-
fying assumptions:

I The input x
(d)
is a vector of shape d.

I The output y is a single real number.

There are three interesting cases: when y ∈ R, it is a regression task; when
y ∈ {0, . . . , c − 1}, it is a classification task; when c = 2, it is a binary classi-
fication task.

9

Supervised learning

Building a loss function

How to build a loss function?

Building a loss function can be done empirically: considering regression, for
example, the prediction error (y − ŷ) is a reasonable quantity to penalize.

Since most times we do not care about the sign of the error, these are all
valid choices:

(y − ŷ)2
squared loss

, |y − ŷ|
absolute loss

, (log(1+ y)− log(1+ ŷ))2
squared log loss

(6)

Is there a principled way to make the choice?

10

Probabilistic formulation

Let us assume that f (x) parameterizes a probability distribution p̂(y | f (x))
over the possible outputs y. We are now choosing p̂(· | ·) instead of l(·, ·),
which can feel more natural.

For example, for regression we can assume a Gaussian shape:

p̂(y | f (x)) = N (y | f (x), σ2) , (7)

where the model predicts the center of a Gaussian distribution with fixed
variance (hyper-parameter).

11

Maximum likelihood

The probabilistic formulation also provides a principled way to interpret
training by maximizing the likelihood (or log-likelihood) of the model (as-
suming the elements of the dataset are i.i.d.):

f ∗(x) = argmax
∏
(xi,yi)

p̂(yi | f (xi)) = argmin
∑
(xi,yi)

− log p̂(yi | f (xi)) . (8)

Under the Gaussian assumption in (7), we obtain − log p̂(yi | f (xi)) ∝ (yi −
f (xi))2, i.e., we should optimize the squared loss!

12

Linear models

Linear models for regression

What is a linear model?

A linear model f is defined as:

f (x) = 〈w, x〉 = w>x =
∑
j

wjxj , (9)

where w is a vector of adaptable parameters.

This model is fundamental in many disciplines, ranging from econometrics
to statistics.

13

Linear models with bias

Amore general formulation considers the inclusion of an offset (bias) b ∈ R:

f (x) = w>x+ b . (10)

Because we can always rewrite this as w>x̄, with x̄ = [x; 1], we can avoid
writing the bias explicitly to simplify the notation.

Hint: Everytime we write a linear model, mentally add an offset term
whenever needed.

14

Graphical representation

x1

�x2

x3

Figure 1: Each arrow represents a linear influence on the destination, which sums
the results.

15

Least-squares cost function

Combining the squared loss with a linear model results in the least-squares
optimization problem:

LS(w) = 1
n

n∑
i=1

(
yi − w>xi

)2
. (11)

We can vectorize LS as:

LS(w) = 1
n
∥∥ y
(n)

− X
(n,d)

w
(d)

∥∥2 , (12)

where [X]i = xi and [y]i = yi.

16

Linear models

Solving the LS problem

Solving the LS problem

LS is a convex problem, with a simple gradient (normal equations):

∇LS(w) = 2
n
X>(Xw− y) . (13)

LS is special in the sense that ∇LS(w) = 0 is a linear equation that can be
solved explicitly:

w∗ =
(
X>X

)
(d,d)

−1 X>
(d,n)

y
(n)

= X>
(d,n)

(
XX>

)
(n,n)

−1 y
(n)

. (14)

The terms
(
X>X

)−1 X> and X>
(
XX>

)−1 are called the pseudoinverses of X,
and they require the corresponding matrices to be invertible (full rank).

17

Regularizing the LS problem

Numerical problems in the inversion of
(
X>X

)
can be solved by adding a

small amount of `2 regularization (ridge regression):

LS-REG(w) = LS(w) + λ

2
‖w‖2 , (15)

for some λ > 0. This makes the problem strictly convex and forces the
solution to be contained in a ball of given radius, modifying the gradient
and the explicit solution as:

∇LS-REG(w) = ∇LS(w)+λw . (16)

w∗ =
(
X>X+λI

)−1 X>y . (17)

where I is the identity matrix of appropriate shape. 18

Show me some code!

Generating some data:

1 # Linear model with unknown coefficients
2 X = tf.random.normal((10, 5))
3 y = X @ tf.random.normal((5, 1))

Computing a linear model:

1 w = tf.random.normal((5, 1))
2 yhat = X @ w # (10, 1)

Computing the objective function:

1 mse = tf.reduce_mean((y - yhat)**2)
19

Show me some code (2)!

Explicit solution (numerically unstable):

1 wopt = tf.linalg.inv(tf.transpose(X) @ X) @ tf.transpose(X) @ y

Explicit solution (better numerical conditioning):

1 wopt = tf.linalg.solve(tf.transpose(X) @ X, tf.transpose(X) @ y)

20

Show me some code (3)!

Simple implementation of gradient descent:

1 for i in range(15000):
2 # Note the sign: the derivative has a minus!
3 w = w + 0.001 * tf.transpose(X) @ (y - X @ w)

0 200 400 600 800 1000

Iteration

0

2

4

6

8

L
o

ss

21

Computational complexity of LS

Matrix multiplication A
(a,b)

B
(b,c)

has complexity O(abc), while matrix inversion

has complexity (roughly) cubic.

For large models and datasets, we want algorithms that can scale linearly
in both n and d: we will see that gradient descent can satisfy this property.

22

Linear models

Overparameterized models and
convergence (optional)

Analyzing the convergence

Rewriting the GD step for the LS problem (ignoring the constant factor 2/n):

wt = wt−1 − ηX>(Xwt−1 − y) . (18)

We can use this to write out how the predictions over the training set evolve:

ŷt = ŷt−1 − ηXX>
(
ŷt−1 − y

)
, (19)

or, after some manipulation:

(ŷt − y) =
(
I− ηXX>

) (
ŷt−1 − y

)
=
(
I− ηXX>

)t
(ŷ0 − y) . (20)

See PPA, Chapter 5 for the full analysis. 23

https://mlstory.org/optimization.html

Overparameterized models

Eq. (20) is an interesting dynamical system: it will diverge in general, unless
(a) all eigenvalues λ0, . . . , λn of XX> are non-negative, and (b) η ∈ [0, 1/λ0].
In this case, it will decrease to 0. If all eigenvalues are positive, it will do so
exponentially.

For the latter condition, we need d > n, otherwise the matrix XX> will have
low-rank (hence, some zero eigenvalues). We call this the over-parameterized
regime: it is possible in this case for LS to perfectly interpolate all training
data exponentially fast!

24

Linear models

Linear models for classification

Multi-class classification

In classification, y is an integer {0, . . . , c − 1}, such that yi = j means that xi
is of class j.

For example, with c = 3 we might have:

I y = 0: the email is spam;
I y = 1: the email is legit;
I y = 2: the email is dubious.

Solving these as regression tasks is generally not an optimal choice: among
other things, it is not guaranteed that classes have a definite ordering.

25

Probability distributions

A common solution is to predict a probability distribution over the classes.

A vector a
(c)
belongs to the probability simplex ∆c if:

∑
i

[a]i = 1 , [a]i ≥ 0 . (21)

If f (x) = ŷ ∈ ∆c, we can interpret it as a categorical probability distribution,
e.g., we can select the class with highest probability as:

class = argmax
i

[ŷ]i . (22)

26

A comment on differentiability

Note that we cannot easily predict an integer with our models, because it
would require some form of threshold operation which is not compatible
with gradient descent (gradient zero almost everywhere).

Predicting a probability distribution can be seen as a soft approximation to
this problem.

27

The softmax function

The softmax function maps any vector to the probability simplex:

[softmax(a)]i =
exp (ai)∑
j exp (aj)

(23)

The numerator ensures that all outputs are positive, while the denominator
ensures that the final vector sums to 1. It can be seen as a soft approxima-
tion to the argmax (a better name is in fact softargmax).

If desired, we can control the approximation with an additional hyper-parameter
τ called temperature:

[softmax(a)]i =
exp (ai/τ)∑
j exp (aj/τ)

(24)
28

Visualizing the softmax function

0 1 2
i

−4

−2

0

2

S
of

tm
ax

in
pu

ts
a
i

(l
og

it
s)

(a) Softmax inputs (logits)

0 1 2
i

0.0

0.2

0.4

0.6

0.8

1.0

S
of

tm
ax

ou
tp

ut
s

(t
em

p
er

at
ur

e=
1)

(b) Softmax outputs
(temperature = 1)

0 1 2
i

0.0

0.2

0.4

0.6

0.8

1.0

S
of

tm
ax

ou
tp

ut
s

(t
em

p
er

at
ur

e=
10

)

(c) Softmax outputs
(temperature = 10)

29

Final model

Our linear model for classification becomes:

f (x)
(c)

= softmax(W
(c,d)

x
(d)
) (25)

The pre-softmax values Wx are called the logits of the model. By explicitly
writing the biases b

(c)
:

f (x) = softmax(Wx+ b) . (26)

30

One-hot encoding

In order to compare the predictions with the ground truth, we encode our
targets using a one-hot encoding. Given a pair (x, y):

yi =

1 if x is of class i ,
0 otherwise .

(27)

For example, with 3 classes {cat,dog,other}:

cat = [1, 0, 0] dog = [0, 1, 0] other = [0, 0, 1] . (28)

This is a probability distribution putting all the mass on a single class.

31

Cross-entropy loss

Finally, we need a loss function l to compare two probability distributions.

The cross-entropy loss is defined for two vectors y, ŷ ∈ ∆c as:

CE(y, ŷ) = −
∑
i

yi log (ŷi) . (29)

The CE loss can be derived from the maximum likelihood principle under
the assumption that f (x) encodes a categorical distribution (try it!).1

1The equation for the categorical distribution in this case would be p(y|f (x)) =
∏

i [f (x)]iyi .

32

Log-likelihood loss

The CE loss is generic for any pair of vectors belonging to the probability
simplex. However, in our case y is always a one-hot encoded vector.

Denote by t the index of the class, t = argmax y, the CE loss simplifies since
only one term in the summation will be different from 0:

CE(y, ŷ) = − log(ŷt) . (30)

Hence, CE can be interpreted as maximizing the probability of the true class
at the expense of all other outputs.

33

Logistic regression

A logistic regression is a linear model f (x) = softmax(Wx) trained by
optimizing the cross-entropy:

LR(W) =
1
n

n∑
i=1

CE (yi, f (xi)) . (31)

It is not possible to solve the logistic regression problem explicitly. A linear
model for classification has dc parameters (or dc + c with biases).

34

Binary classification

A special case is binary classification, where c = 2. In this case, we can
predict a single scalar value f (x) ∈ [0, 1] since:

f (x) probability of class 1 , (32)
1− f (x) probability of class 2 . (33)

The softmax function simplifies to the sigmoid function:

The sigmoid σ(s) ∈ [0, 1] is defined as:

σ(s) = 1
1+ exp(−s)

. (34)

35

Visualizing the sigmoid function

−10 −5 0 5 10

s

0.0

0.2

0.4

0.6

0.8

1.0

S
ig

m
o

id
σ

(s
)

Figure 2: A visualization of the sigmoid function. Note that 0 and 1 are only
approached asymptotically.

36

Binary logistic regression model

Combining everything, we obtain a binary version of the logistic regression
algorithm:

BIN-LR(w) = 1
n

n∑
i=1

[
− yi log

(
σ(w>x)

)︸ ︷︷ ︸
Class 1

− (1− yi) log
(
1− σ(w>x)

)︸ ︷︷ ︸
Class 2

]
(35)

In this case, we can obtain the most probable class from the model as:

class =

1 if σ(w>x) > 0.5 ,
0 otherwise .

(36)

37

Gradient of the logistic regression

By manually differentiating we obtain:

σ′(s) = σ(s)(1− σ(s)) . (37)

Plugging this into the gradient computation we obtain:

∇BIN-LR(w) = 1
n

n∑
i=1

(σ(w>xi)− yi)xi , (38)

showing its similarity to the regression case.

38

Implementation

1 from tensorflow.keras.metrics import *
2

3 # The one we have described up to now.
4 categorical_crossentropy(ytrue, yhat)
5

6 # ytrue should contain the indexes of the classes instead of the
7 # one-hot encodings.
8 sparse_categorical_crossentropy(ytrue, yhat)
9

10 # Numerically-stable versions requiring the logits as inputs
11 categorical_crossentropy(ytrue, yhat, from_logits=True)
12 sparse_categorical_crossentropy(ytrue, yhat, from_logits=True)

39

The logsumexp function

Why a variant with logits in input? Note that the ith term of the cross-
entropy wrt the logits p is given by:

− log

(
exppi∑
j exppj

)
. (39)

In practice, this can be highly unstable. However, it can be rewritten as:

−pi + logsumexp(p) , (40)

where logsumexp is defined as logsumexp(p) = log (
∑

i exppi).

https://gregorygundersen.com/blog/2020/02/09/log-sum-exp/
40

https://gregorygundersen.com/blog/2020/02/09/log-sum-exp/

The logsumexp trick

The reason this is important is that the logsumexp function is invariant in
the following sense:

logsumexp(p) = log

(∑
i

exp(pi − c)
)

+ c , (41)

where c is an arbitrary constant. By setting c = max (p), we can ensure
numerical instabilities never occur.

In this sense, softmax can be interpreted as part of the model or as part
of the loss; this is not an issue, since argmax only cares about the relative
ranking of the values, which is not changed by the softmax.

41

Linear models

Calibration and a probabilistic
formulation

Calibration

A common misconception when doing classification is that [f (x)]i can be
immediately interpreted as the probability of pattern x being of class i.

However, this is only true whenever the trained model satisfies:

p(y = i | x) = [f (x)]i . (42)

We say the model is well calibrated, but this must be checked manually.

Guo, C., et al.. On calibration of modern neural networks. ICML 2017.

42

Measuring calibration

To measure the calibration of a model, we keep a separate validation set,
and we split the interval [0, 1] into m equispaced bins (each of size 1/m).
Define:

I Bm the number of samples from the validation set, whose predicted
confidence falls in bin m.

I pm the average confidence of the network for that bin.
I am the average accuracy of the network for these elements.

Then, the expected calibration error (ECE) is given by:

ECE =
∑
m

Bm
n
|am − pm| . (43)

43

Calibration plots

Figure 3: Plotting am against pm for every bin gives us a reliability plot (from Guo
et al., 2017). 44

Focal loss

This topic is important because more complex networks may be highly over
(or under) confident, with manymethods to improve it (temperature scaling,
logit normalization, ...).

A simple (and popular) option is to decrease the weight given to ‘easy’ sam-
ples using a variant of cross-entropy call the focal loss:

FLα(y, ŷ) = −(1− ŷc)α log ŷc , (44)

where c = argmax y.

Mukhoti, J., et al., 2020. Calibrating deep neural networks using focal loss. Advances in Neural Information
Processing Systems, 33, pp. 15288-15299.

45

Visualizing the focal loss

Lin, T.Y., et al., 2017. Focal loss for dense object detection. In IEEE ICCV (pp. 2980-2988).
46

Reading material

I D2L: Chapters 3 and 4; UDL: Chapter 2; PPA: parts of Chapters 3-5.

47

	1
	Introduction
	Supervised learning
	Setup and examples
	Loss functions
	Building a loss function

	Linear models
	Linear models for regression
	Solving the LS problem
	Overparameterized models and convergence (optional)
	Linear models for classification
	Calibration and a probabilistic formulation

