
Neural Networks for Data Science Applications
Master’s Degree in Data Science

Lecture 6: Convolutional neural networks

Lecturer: S. Scardapane

Introduction

Why fully-connected layers are not
enough

Definition of an image

An image is a 3-dimensional tensor X
(h,w,c)

, where:

I h is the height of the image (e.g., 512 pixels).
I w is the width of the image (e.g., 1024 pixels).
I c is the number of channels (e.g., 3 channels for a RGB image, 1
channel for a greyscale image).

The first two dimensions have a precise grid ordering, while the channels
do not have a precise ordering (i.e., we can switch RGB to GBR or BRG with
no information loss).

2

Vectorizing an image

A simple way to process an image is to vectorize it by stacking all its values:

x
(hwc)

= vect(X) .

Once this is done, we can apply what we know, e.g., a fully-connected layer:

h = φ(Wx) . (1)

Can you see what is wrong with this approach?

3

Vectorization of an image

Original	image:	32	x	32	x	3

...

Vectorized	form:	
3072	elements

3072	weights	
per	neuron!

Horse?

4

Where has the image gone?

Original	image:	32	x	32	x	3

...

Vectorized	form:	
3072	elements

Horse?

No	form	of	"spatial"	reasoning!

5

Drawbacks

A major drawback of this approach is that it requires a huge number of
parameters: for example, for a 1024 × 1024 RGB image we need ≈ 3M pa-
rameters for a logistic regression!

Worse, we have completely lost all the spatial information after the first
operation, i.e., we cannot compose the previous block multiple times.

Next, we show how we can properly incorporate this information, to define
a layer targeted for image-like data.

6

Convolutional neural networks

Convolutional layers

What we want

We want a layer of the form:

H
(h,w,c′)

= f (X)
(h,w,c)

,

with the following properties:

I the output tensor must exploit the ‘spatial information’ contained in
the image;

I It must be efficient (with a small number of parameters);
I It must be composable and differentiable, i.e., we want to do:

Y = (fl ◦ . . . ◦ f2 ◦ f1)(X)

7

Distance between pixels

We can define many distances between two pixels i, j and i′, j′, e.g.:

d(i, j, i′, j′) = max {|i− i′|, |j− j′|} .

Fix an odd number s = 2k + 1. A patch is a sub-image centered at (i, j),
containing all pixels (i′, j′) under distance k:

Pi,j,k
(s,s,c)

= [X]i−k:i+k,j−k:j+k,: . (2)

8

Visualizing a patch

We can think of a patch as a small slice of the original tensor:

Width
H
ei
gh
t

Ch
an
ne
ls

The size of the patch will be called the filter size or kernel size.

9

Locality

An image layer is local if [H]i,j only depends on Pi,j,k for some k.

We can achieve this by restricting the linear operation to the single patch:

[H]i,j︸︷︷︸
Output for pixel (i,j)

= φ
(Linear combination of patch elements︷ ︸︸ ︷
Wi,j · vect(Pi,j,k)

)
,

where we have a separate weight matrix Wi,j
(c′,ssc)

for each location. These are

called locally-connected layers.

10

Translational equivariance

The previous layer keeps the spatial information, but it is definitely not ef-
ficient: in total, it requires o · ssc · h · w parameters.

Fortunately, there is another nice property we can exploit.

An image layer is translational equivariant if Pi,j,k = Pi′,j′,k implies
[H]i,j = [H]i′,j′ .

Informally, we want to recognize something irrespective of where it appears
in the image, i.e., if something moves (the patch) we want the output feature
to move ‘with it’.

11

Convolutional layer

We can achieve translational equivariance easily by sharing the sameweights
across all locations, i.e., Wi,j = W:

[H]i,j = φ(W · vect(Pi,j,k)) , (3)

The resulting layer is called a convolutional layer. It has all the properties
we were looking for, including efficiency (we have only c′ · ssc parameters).

Remember that in general we always consider a version with bias:

[H]i,j = φ(W · vect(Pi,j,k)+ b
(c′)

) . (4)

12

Equivalent formulation

Another way to define the previous operation is to define a 4-dimensional
weight tensor W

(s,s,c,c′)
. Then we have:

[H]i,j,d = φ

 +k∑
i′=−k

+k∑
j′=−k

c∑
z=1

[W]i′+k+1,j′+k+1,z,d[X]i+i′,j+j′,z

If you know some signal processing, this should clarify the meaning of con-
volution for this operation. We use this formulation in the following to de-
fine several variations of the basic convolutional layer.

13

Terminology time!

I s = 2k+ 1 is called the kernel size or filter size. It is a hyper-parameter
of the layer, together with the number c′ of output channels.

I In accordance with signal processing, the elements of the matrix W (or
the equivalent tensor W) are called filters.

I A single slice [H]:,:,a is called an activation map. Sometimes, we
distinguish between pre-activation (before φ) and post-activation.

14

Filter operation 1/3

Kernel size
/ filter size

x = 0.5

0.5

Activation map
Figure 1: Start from the first patch, filling the first element of the activation map.

15

Filter operation 2/3

Kernel size
/ filter size

x = -1.3

0.5

Activation map

-1.3

Figure 2: The window is moved one pixel, and we compute a different activation.
16

Filter operation 3/3

Kernel size
/ filter size

x = ...

Activation map
Figure 3: At the end, we obtain an activation map for the entire image.

17

Convolutive layer

The previous operation is shown for a single filter. Stacking many filters
together gives us the complete convolutive layer.

C
onvolutive layer

(5 filters)
18

Multiple channels

Figure 4: Dive into Deep Learning, Chapter 6.

19

Receptive field

Suppose we stack several convolutional layers:

H = (f3 ◦ f2 ◦ f1)(X)

The receptive field of [H]i,j is the subset of X that contributed to its
computation.

For one layer, the receptive field is just Pi,j,k. For two layers, however (with
the same kernel size), it becomes Pi,j,2k. This justifies our choice of locality:
even if a single layer is highly localized, many layers can still process the
entire image at once, since the receptive field increases linearly.

20

Convolutional layers are linear

A convolutive layer remains a linear operation, in the sense that convolution
can be represented as a matrixW with a special Toeplitz-like structure. For a
simplified example, consider a 1D sequence [x1, x2, x3, x3]>. Convolution with
a filter [w1,w2] of size 2 is equivalent to multiplication by the matrix:w1 w2 0 0

0 w1 w2 0
0 0 w1 w2

 . (5)

Concatenating two convolutional layers is equivalent to a single convolu-
tional layer with different kernel size. Like for fully-connected layers, it is
important to interleave them with activation functions, typically ReLUs.

21

Convolutional neural networks

Padding

Image padding

Convolution as described before cannot be applied to the borders of the
image. Zero padding can be added to preserve the original width / height.

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

C
onvolutive filter

Same size as the
original image 22

Padding in practice

Figure 5: Dive into Deep Learning, Chapter 6.

23

Implementation

Most frameworks, including TensorFlow, provide a primitive with an efficient
low-level implementation:

1 # Image (with mini-batch dimension)
2 X = tf.random.normal((1, 64, 64, 3))
3

4 # Filters (filter size = 5, output filters = 100)
5 W = tf.random.normal((5, 5, 3, 100))
6

7 # Convolution
8 H = tf.nn.conv2d(X, W, 1, 'SAME')
9 print(H.shape) # (1, 64, 64, 100)

https://www.tensorflow.org/api_docs/python/tf/nn/conv2d. 24

https://www.tensorflow.org/api_docs/python/tf/nn/conv2d

Convolutional neural networks

Max pooling and classification

Reducing dimensionality

Convolutional layers (as described up to now) can modify the number of
channels, but they keep the spatial resolution (h,w) constant.

In practice, we might want to reduce the resolution in-between blocks, to
make the networks faster and more efficient.

This is also justified from a signal processing perspective, where multi-
resolution filter banks are common.

25

Stride

In a convolution with stride, we compute only 1 every s elements of the
output tensor H, where s is the stride parameter.

For example, for s = 2, we have:

[H]i,j
(h/2,w/2,c′)

= φ(W · vect(P2i−1,2j−1,k)) ,

The tf.nn.conv2d function we saw before requires, in fact, a stride pa-
rameter.

26

Convolution with a larger stride

Figure 6: Left figure has stride = 1, right figure has stride = 2. Image source is
http://cs231n.github.io/convolutional-networks/.

27

http://cs231n.github.io/convolutional-networks/

Max-pooling

Alternatively, a max-pooling (or an average-pooling) layer can be used. It
computes the maximum (or the average) from small blocks of the input
tensor.

Differently from convolutional layers, it is common to consider even-dimensional
blocks (2x2, 4x4, ...). It acts on each channel separately.

28

Visualization of max-pooling

3.2 -1.5

0.2 0.7

2.7 0.5

-1.8 2.3

0.4 1.3

-2.0 0.1

1.25 -0.6

-0.8 1.0

3.2 2.7

1.3 1.25

Max-pooling

Figure 7: Visualization of max-pooling on a 4× 4 image with windows of size 2× 2.
Note that the maximum operation can be replaced with any differentiable
aggregation (e.g., average).

29

(1)

A standard CNN for classification is then composed by:

I Interleaving convolutional and pooling layers;
I Flattening (or global pooling);
I A classification block.

Note: with global pooling, the final layer is roughly invariant to a translation,
despite each convolutional layer being equivariant.

More recent CNNs add many variations on this basic architecture. How to
choose the sequence of layers and their hyper-parameters is still an open
model selection research issue.

30

Complete architecture of a CNN (2)

Block 1: H
(h′,w′,c′)

= (fl ◦ . . . ◦ f2 ◦ f1)(X) (convolutional or pooling layers)

Block 2a: h
(h′w′c′)

= vect(H) (flattening)

Block 2b: h
(c′)

= 1
h′w′

∑
i,j [H]i,j (global pooling)

Block 3: y = softmax(g(h)) (e.g., logistic regression)

31

Example of a simple CNN specification

Original	image
64	x	64	x	3

C
o
n
vo
lu
tio
n
a
l	la
ye
r

32	filters

M
a
x
-p
o
o
lin
g

2	x	2	w
indow

C
o
n
vo
lu
tio
n
a
l	la
ye
r

64	filters

M
a
x
-p
o
o
lin
g

2	x	2	w
indow

Fla
tte
n
in
g

Fu
lly-co

n
n
e
cte
d
	la
ye
r

10	units

Final	classification
(10	classes)

Dim:
64	x	64	x	32

Dim:
32	x	32	x	32

Dim:
32	x	32	x	64

Dim:
16	x	16	x	64

Dim:
16384

Dim:
10

Figure 8: Note how multiple down-sampling layers are required to make the final
classification dimensionality manageable. 32

Designing in blocks

Original	image
64	x	64	x	3

C
o
n
vo
lu
tio
n
a
l	la
ye
r

32	filters

M
a
x
-p
o
o
lin
g

2	x	2	w
indow

C
o
n
vo
lu
tio
n
a
l	la
ye
r

64	filters

M
a
x
-p
o
o
lin
g

2	x	2	w
indow

...

"Block" 1 "Block" 2

Figure 9: When CNNs tends to become deep, it is simpler to reason in repeating
blocks made of multiple components. This is easy using the layering abstraction.

33

Convolutional neural networks

Other notable types of convolutions

1x1 convolutions

One important type of convolutional layer is a 1x1 layer, i.e., a layer with a
kernel size of 1 (k = 0), also called a pointwise convolution.

This can be understood as a pixel-wise operation, which is applied inde-
pendently at every pixel, with no contribution from the neighbours.

It is especially important when we desire to simply modify the number of
channels.

34

Depth-wise convolutional layer

An orthogonal idea is to apply a convolution to each channel independently,
by combining only information across the spatial dimensions.

The result is a depth-wise (separable) convolution:

[H]i,j,d
(h,w,c)

= φ

 +k∑
i′=−k

+k∑
j′=−k

[W]i′+k+1,j′+k+1,d
(s,s,c)

[X]i+i′,j+j′,d

This idea can also be extended to group convolution. A depthwise convo-
lution followed by a pointwise convolution is called a depthwise-separable
convolution and it is extremely common for modeling efficient architec-
tures.

35

The inception block

Figure 10: The inception block combines convolutions with different kernel sizes.
Source: Dive into Deep Learning, Chapter 7.4.

Szegedy, C. et al., 2015. Going deeper with convolutions. In Proceedings of IEEE CVPR (pp. 1-9).

36

Additional material

Convolutions and the Fourier transform

About this material

We now describe briefly the relation between the convolutional layer we
defined and the convolution operator as defined in signal processing.

While this does not provide particular insights in this case, it is the key
to understand many recent developments in deep learning, most notably
geometric deep learning.

Bronstein, M.M., Bruna, J., Cohen, T. and Veličković, P., 2021. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. arXiv preprint arXiv:2104.13478.

37

Convolution operator

Consider two scalar functions x(t) and w(t). Their convolution is defined as:

(x ? w)(t) =
∫ +∞

−∞
x(v)w(t − v)dv . (6)

Note the minus sign in the definition: an equivalent definition with the plus
sign is called cross-correlation. Since in our case w(t) is eventually learned
this distinction is minor.

38

Images as signals

Consider the set of integers I = {0, 1, . . . ,n− 1}. A function f : I → R can
be identified with a vector f

(n)
, where:

[f]i = f (i) .

The reasoning can be extended to an image, which can be interpreted as a
function defined over a grid domain.

39

Circular signals

For the sake of simplicity, we suppose the signal is circular, meaning that
we can interpret it as a periodic signal in the sense:

[x]n = [x]0 , (7)

or, more in general:
[x]k = [x]k mod n . (8)

This is useful because it removes issues at the boundary, although the rea-
soning can be extended to the non-circular case.

40

Discrete convolution

Take two signals x and w. Their circular discrete convolution is obtained by
discretizing the integral:

[x ? w]i =
n−1∑
j=0

[x]j mod n[w]i−j mod n , (9)

This is similar to the convolutional layer, except for howwe handle boundary
conditions due to the previous cyclic assumption.

41

Convolution theorem

Convolution is closely linked with the Fourier transform F {x}, which trans-
forms a signal into a corresponding frequency representation.

The convolution theorem, in particular, states that circular convolution be-
comes multiplication in the frequency domain:

w ? x = F−1 (F {w} � F {x}) , (10)

where F−1 is the inverse Fourier transform.

Frequency-domain filters are extremely important in signal processing, less
so in CNNs, where (10) must be computed for each layer.

Vasilache, N. et al., 2014. Fast convolutional nets with fbfft: A GPU performance evaluation. arXiv preprint
arXiv:1412.7580. 42

Circulant matrices

A circulant matrix of shape (n,n) for a vector w
(k)
is defined as:

[Cw]i,j = wi−j mod n

For example, for k = 3 and n = 5:

Cw =

w0 w1 w2 0 0
0 w0 w1 w2 0
0 0 w0 w1 w2
w2 0 0 w0 w1
w1 w2 0 0 w0

43

Shift matrices

Consider a vector w with all 0 except a 1 in position k. Then, Cw = Sk is
called a shift matrix, and Skx translates the signal by k positions:

[Skx]i = [x]i+k mod n . (11)

As a special case, translation by 0 positions returns the original vector:

S0x = Ix = x . (12)

44

Circulant matrices and shifts

Convolution can be expressed as a matrix product with a circulant matrix:

x ? w = Cwx . (13)

We can also show that any two circulant matrices commute:

Cw1Cw2 = Cw2Cw1 . (14)

Putting the two results together:

(Skx) ? w = CwSkx = SkCwx = Sk(x ? w) .

45

Tying everything together

If we translate the signal x, then convolve by w, the result is equivalent to
shifting the convoluted signal x ? w. Formally, we say that convolution is
equivariant to translations.

In fact, convolution is the most general equivariant linear operation of this
type, which provides some justification for its use.

In geometric deep learning, we obtain convolutional operators for other do-
mains (e.g., manifolds) by defining them to be equivariant to certain prop-
erties of interest (e.g., permutations over graphs).

46

Further readings

I D2L: Chapter 7; UDL: Chapter 10.
I There are many tools to help you visualize convolutional operations,
e.g., https://ezyang.github.io/convolution-visualizer/
index.html.

I For the geometric deep learning part, this series of blog posts and the
accompanying text book: https://towardsdatascience.com/
deriving-convolution-from-first-principles-4ff124888028.

47

https://ezyang.github.io/convolution-visualizer/index.html
https://ezyang.github.io/convolution-visualizer/index.html
https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

	1
	Introduction
	Why fully-connected layers are not enough

	Convolutional neural networks
	Convolutional layers
	Padding
	Max pooling and classification
	Other notable types of convolutions
	1D/3D convolutional layers

	Additional material
	Convolutions and the Fourier transform

