
Neural Networks for Data Science Applications
Master’s Degree in Data Science

Lecture 7: Building deep neural networks

Lecturer: S. Scardapane

Introduction

A few bits of history

From LeNet onwards

The basic building blocks we saw up to now are relatively old: in 1998, the
team of Y. LeCun at Bell Labs already have a working CNN (5-7 layers) for
handwritten digits recognition, termed LeNet-5.

However, from 2012 onwards, the combination of more computational power
(especially GPUs), data, and a few algorithmic improvements quickly made
deep CNNs the absolute state-of-the-art across several domains.

LeCun, Y., et al., 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE,
86(11), pp.2278-2324.

2

ImageNet Challenge

Figure 1: Evolution of accuracy on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC).

3

Overview of AlexNet

AlexNetwas the first CNN to win the ILSVRC image classification competition
by a large margin.1

It had 8 adaptable layers (5 convolutional, 3 fully-connected). For training,
it exploited several ideas, some of which relatively novel at the time:

I ReLU activation instead of sigmoid-like functions;
I Data augmentation and dropout to handle overfitting.

1Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems (pp. 1097-1105).

4

Visualization of AlexNet

Figure 2: Top: LeNet (1998), bottom: simplified version of the original AlexNet
(2012). Source: Dive Into Deep Learning, Chapter 8.1. 5

How many layers are enough?

The Oxford’s Visual Geometry Group (VGG) in 2014 popularized the idea of
defining blocks composed of several layers, from which variants of a given
architecture can be made according to a predefined scaling recipe.

Their proposed block was very simple:

1. Several convolutional layers with size 3× 3 and the same number of
filters;

2. A single max-pooling block with 2× 2 windows at the end of the block.

In the VGG architecture, filters are generally doubled after one or two blocks.

Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

6

Visualization of VGG-11

C
o
n
vo
lu
tio
n
a
l	la
ye
r

3x3	kernels

M
a
x
-p
o
o
lin
g

2	x	2	w
indow

VGG	block

C
o
n
vo
lu
tio
n
a
l	la
ye
r

3x3	kernels

...

B
=
1,	64	filters

B	layers

B
=
1,	128	filters

B
=
3,	128	filters

B
=
3,	256	filters

B
=
3,	512	filters

Fully-connected	(4096)

Fully-connected	(4096)

Fully-connected	(1000)

Figure 3: Original VGG-11. By varying the number and configuration of blocks, we
go from VGG-11 to VGG-19.

7

Experimenting on CIFAR-10

Consider the CIFAR-102 dataset: 60000 32x32 colour images in 10 classes,
with 6000 images per class.

To see what happens when varying the depth, we experiment with a VGG-
like architecture, varying the number of blocks, and the number of convo-
lutional layers inside each block. We use a global average pooling at the
end followed by a linear layer, with cross-entropy loss. We run 3 epochs, 3
repetitions each, with the Adam optimization algorithm.

8

Results

1 2 3 4 5 6

Conv2D layers / block

1

2

3

4

Bl
oc

ks

32.5% 42.1% 48.0% 52.4% 52.0% 55.3%

47.0% 54.5% 27.1% 24.5% 10.0% 10.0%

59.6% 27.0% 26.8% 10.0% 10.0% 10.0%

63.1% 10.0% 10.0% 10.0% 10.0% 10.0%

Figure 4: Test accuracy

1 2 3 4 5 6

Conv2D layers / block

1

2

3

4

Bl
oc

ks

2.4k 39.4k 76.3k 113.2k 150.2k 187.1k

76.9k 261.4k 446.0k 630.5k 815.0k 999.5k

373.4k 1.1M 1.9M 2.7M 3.5M 4.2M

1.6M 4.7M 7.8M 11.0M 14.1M 17.2M

Figure 5: Parameters

9

Comments on the results

I Some combinations do not even train (they get stuck at initialization).
Other combinations appear much slower.

I Increasing the number of blocks looks good, but the original image is
destroyed after a few max pooling operations.

I Increasing the number of layers in a block is also good, but the gains
are more marginal.

I It is very easy to make the number of parameters go up.

This is harder than expected!

10

Families of deep networks

Subsequent advances in the period 2012-2017 came from other teams com-
peting in the ILSVRC (ImageNet) challenge and led to an explosion of new
families and methods, including:

I Parallel layers and later Batch Normalization in the GoogLeNet
(Inception) family.

I Residual connections in the ResNet models.
I Depthwise convolutions for efficiency in the MobileNet family.
I Neural architecture search combined with simple scaling strategies,
e.g., EfficientNets and NASNets.

11

Unexplained phenomena

When moving towards a very deep regime, many strange phenomena ap-
pear, including (but not limited to):

I Scaling laws: performance scales linearly in a power law of data and
compute, in a Moore-like fashion.

I Multiple descents: periods of overfitting may lead (after a while) to
periods of better generalization.

I Emergent properties: scaling sufficiently may lead to a phase
transition quickly moving performance on certain tasks from 0 to
state-of-the-art (depending on the metric).

12

A real-world scaling law

Figure 6: Open-Sourcing BiT: Exploring Large-Scale Pre-training for Computer
Vision (Google AI Blog). Note: this uses vision transformers and pretraining, which
we will look into soon.

13

What about overfitting?

Overfitting happens when the performance of a model on the training
set is improving, while the performance on a separate validation set
is worsening.

Deep learningmodels are strangely resilient to classical overfitting, but they
have shown some peculiar characteristics, e.g.:

1. Models trained for long enough on random data can still memorize
the entire dataset and achieve perfect accuracy.

2. Models can start improving after a period of apparent overfitting
(double descent).

14

Visualization of overfitting in deep networks

Figure 7: Taken from (Zhang et al., 2016). A large CNN can fit data perfectly even
with random labels and/or random pixels.

15

The double descent phenomenon

Figure 8: Deep Double Descent (OpenAI Blog).
16

Summarizing

I The performance of a neural network depends heavily on the
amount/quality of data, its architecture, hyper-parameters,
initialization, optimization, etc. This requires a mix of good recipes,
manual/automatic search, rules-of-thumbs, and experience.

I The tools we have available up to now are not enough for truly deep
networks. In this lecture, we cover a number of additional tricks and
layers designed especially to simplify and improve the training of the
models.

17

Data strategies

Data augmentation

Data augmentation

Data augmentation is a technique to virtually increase the size of the dataset
at training time:

1. Sample of mini-batch of examples;
2. For each example, apply one or more transformations randomly
sampled (e.g., flipping, cropping, ...).

3. Train on the transformed mini-batch.

Data augmentation can be extremely helpful for overfitting, making the net-
work more robust to small changes in the input data.

18

Visualizing image augmentation

Figure 9: Devising data augmentation strategies is especially easy with images,
e.g., cropping, shearing, shifting (image source).

19

https://www.learnopencv.com/understanding-alexnet/

Other types of data augmentation

Devising efficient forms of data augmentation is a popular research field.

For example, MixUp3 combines two examples (x1, y1) and (x2, y2) by taking
convex combinations with a random λ:

x = λx1 + (1− λ)x2 , (1)
y = λy1 + (1− λ)y2 . (2)

3Zhang, H., Cisse, M., Dauphin, Y.N. and Lopez-Paz, D., 2017. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412.

20

CutMix

For images, MixUp can create samples that look highly unnatural. In CutMix4,
we first sample a random patch from the second image x2. Define a mask
M where Mij = 1 if the pixel belongs to the patch or not, we overimpose the
random patch on the first image:

x = (1−M)� x1 +M� x2 , (3)
y = λy1 + (1− λ)y2 . (4)

where λ is again sampled from the uniform distribution in [0, 1].

4Yun, S., et al., 2019. Cutmix: Regularization strategy to train strong classifiers with localizable features. In
IEEE/CVF ICCV (pp. 6023-6032).

21

Pipelines for data augmentation

Figure 10: RandAugment is a popular way of defining data augmentation, by
selecting randomly N data augmentation steps, all of a predefined magnitude M.

Cubuk, E.D., et al., 2020. RandAugment: Practical automated data augmentation with a reduced search space.
In IEEE/CVF CVPR Workshops (pp. 702-703).

22

Is augmentation part of the model?

In code, data augmentation can be included as part of the data processing,
or as part of the model itself:

1 # Data augmentation in a data pipeline
2 train_data = train_data.map(partial im:
3 tf.image.random_brightness(im, 0.1))
4

5 # Add data augmentation before a model
6 model = Sequential(
7 tf.keras.layers.RandomBrightness(0.1),
8 CNN()
9)

23

Training and inference

A layer like RandomBrightness has different behaviours depending on
whether we are training (training mode) or not (inference mode). They can
be triggered with the training parameter when calling it:

1 augm = tf.keras.layers.RandomBrightness(0.1)
2

3 # Add image augmentation
4 augm(im, training=True)
5

6 # Do nothing
7 augm(im, training=False)

Using the predict and fit functions of tf.keras automatically selects
the correct version.

24

Optimization strategies

Early stopping

Early stopping

Early stopping is a procedure to find the optimal number of iterations (sup-
posing a single descent curve):

1. Keep a portion of the dataset as the validation set.
2. For each epoch, check the validation loss (or accuracy).
3. Whenever validation loss is not improving for a while (a certain
number of epochs called patience), stop the optimization process.

Early stopping is extremely common in neural networks; it highlights the
difference between pure optimization and learning.

25

Optimization strategies

Regularization

Improving training with regularization

A warning sign of overfitting can be large weights: these networks tend to
be less smooth and make sharper changes in their outputs.

Regularization forces the optimization to select a network with smaller weights
by penalizing large norms:

w∗ = argmin
{∑

i

l(f (xi), yi) + λ · ‖w‖2
}
, (5)

λ is a hyper-parameter: with λ = 0 we have no regularization; with a λ too
large, all weights would go to 0.

26

Weight decay

Consider the gradient update of a regularized loss:

−Gradient of loss = −∇
[∑

i

l(f (xi), yi)
]
−2Cw . (6)

In the absence of the first term, the weights would decay exponentially to
zero. In pure SGD, this form of regularization is also called weight decay.

In other optimization algorithms, weight decay and regularization are dif-
ferent strategies and must be implemented differently.

Loshchilov, I. and Hutter, F., 2017. Fixing weight decay regularization in Adam. arXiv preprint arXiv:1711.05101.

27

Other forms of regularization

Regularization allows us to steer the optimization problem towards favourable
solutions.

Many other types of regularization exists! For example, replacing the Eu-
clidean norm of the weights with the sum of absolute values:

w∗ = argmin
{∑

i

l(f (xi), yi) + C ·
∑
j

|wj|
}
, (7)

can lead to sparser solutions.5

5Scardapane, S., Comminiello, D., Hussain, A. and Uncini, A., 2017. Group sparse regularization for deep neural
networks. Neurocomputing, 241, pp.81-89.

28

Graphical depiction of LASSO

Figure 11: Graphical depiction of why the absolute value promotes sparsity in the
linear case (reproduced from The Elements of Statistical Learning). 29

On weight reparameterization

The `1 norm ‖w‖1 =
∑

i|wi| is difficult to optimize with SGD, because it is
not differentiable at 0. Interestingly, we can reparameterize w with two new
vectors a and b, w = a� b, and rewrite:

f (w) + C‖w‖1 → f (a� b) + C
[
‖a‖2 + ‖b‖2

]
. (8)

This has a similar loss landscape but it is much easier to optimize. In gen-
eral, how we parameterize the same vector can have a significant impact
on training and optimization.

Ziyin, L. andWang, Z., 2022. Sparsity by Redundancy: Solving L1 with a Simple Reparametrization. arXiv preprint
arXiv:2210.01212.

30

New layers

Dropout regularization

Data augmentation revisited

Why is data augmentation helpful?

The core idea is that we can make the network more robust by adding slight
perturbations to the input. We can prove this to be a form of regularization.6

Dropout extends this idea to the network itself: instead of perturbing the
images, we perturb the hidden layers by randomly dropping (removing)
some of the connections.

6Bishop, C.M., 1995. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 7(1),
pp.108-116.

31

Visualization of dropout

Normal	operation

With	dropout

...

Figure 12: With dropout, the network can be seen as being drawn from a (very
large) collection of sub-networks. Dropout can also be applied to the input of the
network. 32

Dropout regularization

Define H
(b,f)

as the output of a generic fully-connected layer having f units,

being fed with b inputs (mini-batch size).

With dropout, during training we replace it with:

H̃ = H�M , (9)

where M is a binary matrix with entries drawn from a Bernoulli distribution
with probability p (i.e., Mi,j is 0 with probability p, 1 with probability (1− p)).

If Mi,j = 0, the value Hi,j is replaced with 0.

Srivastava, N., et al., 2014. Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1), pp. 1929-1958.

33

Montecarlo dropout

Consider a NN f (x;M) with a single layer of dropout. The output is a random
variable w.r.t. the distribution of the mask M. At inference time, a sensible
approach would be to take the expected value:

ŷ = Ep(M) [f (x;M)] ≈
1
N

N∑
i=1

f (x;Mi) , (10)

where Mi ∼ p(M) are draws of the mask, and the second step is a Monte-
carlo approximation. We call this Montecarlo dropout, and we can use the
different samples to gather an uncertainty estimate on the output.

Gal, Y. and Ghahramani, Z., 2016. Dropout as a Bayesian approximation: Representing model uncertainty in
deep learning. In ICML (pp. 1050-1059). PMLR.

34

Dropout at inference time

A simpler and more common choice is to take the expected value of the
dropout layer (as opposed to the entire network), since we can compute it
in closed form:

E[H̃] = p0+ (1− p)H = (1− p)H . (11)

To simplify the inference, a common variant is the so-called inverted dropout:

H̃ = (H�M)/(1− p) .

This is useful because E[H̃] = p0+(1−p) H
1−p = H, i.e., we can simply remove

the layer. Some books consider this the dropout implementation.

35

Variants of dropout

I Dropout applied to a convolutive layer would drop single channels of
single pixels. Spatial dropout drops entire channels at a time. Cutout
drops patches of the tensor (for each channel).

I In general, dropout (even its variants) is less common for convolutive
layers, but more common for other types of networks (transformers,
recurrent networks).

I DropConnect drops single weights instead of entire neurons:

H̃ = φ ((W�M)x) .

36

Early and late dropout

Dropout can also be switched on or off during training. Early dropout can
be useful to counteract gradient variance in SGD during the initial stages of
training; late dropout, instead, can be useful against overfitting.

Figure 13: Reproduced from Dropout Reduces Underfitting (Liu et al., 2023).

37

New layers

Batch normalization

Data normalization

Given a dataset X
(n,d)

, it is common in machine learning to preprocess it so

that each column has mean zero and unitary variance (z-scaling or standard
scaling):

X′ = X− µ√
σ2

, (12)

where µ,σ2 ∈ Rd, µj = 1
n
∑

i Xi and σ2j = 1
n
∑

i (Xij − µj)
2 are the empiri-

cal mean and variance. For example, we can do this in scikit-learn with
StandardScaler. For many optimization algorithms, this can accelerate
training significantly (preconditioning), because it makes the Hessian of X
closer to the identity.

38

Introducing batch normalization layers

Batch normalization (BN), introduced in 2015, extends this idea by normal-
izing the outputs of each layer/block in a network,7 and then learning an
optimal mean and variance for each unit.

This is not trivial, because the mean and variance of the layer’s output will
vary during the optimization, and recomputing them on the entire dataset
can be computationally expensive. BN works by approximating the esti-
mates using the data in the mini-batch.

7Ioffe, S. and Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. Proc. ICML.

39

How batch normalization works

Consider now a generic output H
(b,f)

of a fully-connected layer (with batching).

First, compute the empirical mean and variance column-wise:

µ̃j =
1
b
∑
i

[H]i,j , σ̃2j =
1
b
∑
i

([H]i,j − µ̃j)
2 .

Second, we standardize the output so that each column has mean 0 and
standard deviation 1:

H′ =
H− µ̃√
σ̃2 + ε

,

where ε > 0 is a small coefficient to avoid division by 0.

40

How batch normalization works (2)

The final output of the batch normalization layer BN(H) sets a new mean
and variance for each column:

[BN(H)]i,j = αjH′
i,j + βj . (13)

The 2f values αj, βj are trained via gradient descent.

Commonly, BN is inserted between a fully-connected layer and the activa-
tion function:

Z = φ (BN(XW+ b)) . (14)

41

Batch normalization during inference

Similarly to dropout, BN requires a different behaviour outside of training,
since it is undesirable that the output for an input depends on the mini-
batch it is associated to.

Two common solutions are:

I After training, compute a mean and variance by running the trained
model on the entire dataset, fixing the values µj, σ2j to that value.

I Keep a moving average of all the estimated means and variances
when training, using the final value during inference.

Wu, Y. and Johnson, J., 2021. Rethinking “Batch” in BatchNorm. arXiv preprint arXiv:2105.07576.

42

Batch normalization in convolutive layers

BN is very common in convolutive layers. Consider the output H
(b,h,w,c)

of a

generic 2D convolutive layer (b, as before, is the size of the mini-batch).

BN works exactly as before, but the mean and the variance are computed
for each channel:

µ̃z =
1

bhw
∑
i,j,k

[H]i,j,k,z , σ̃2z =
1

bhw
∑
i,j,k

([H]i,j,k,z − µ̃z)
2 . (15)

43

Why does batch normalization work?

Despite its simplicity, batch normalization is extremely effective when train-
ing deep NNs.

Originally, its efficiency was believed to be consequence of a so-called inter-
nal covariate shift (i.e., distributions of activations changing layer-by-layer).

Nowadays, it is believed that BN works by making the optimization land-
scape smoother and, consequently, the gradients more predictive.

Santurkar, S. et al., 2018. How does batch normalization help optimization?. In NeurIPS (pp. 2483-2493).
Lipton, Z.C. and Steinhardt, J., 2018. Troubling trends in machine learning scholarship. arXiv preprint

arXiv:1807.03341.

44

Problems of batch normalization

Batch normalization has multiple issues in practice:

I It introduces dependencies across the elements of the mini-batch,
making it less suitable in, e.g, distributed optimization or contrastive
self-supervised learning.

I The variance of the estimate can be very high when the batch size is
small, which is a problem with very large models.

I There is a mismatch between its training and inference behaviours.

This has led to many variants and a significant research on developing
normalizer-freemodels: https://iclr-blog-track.github.io/2022/
03/25/unnormalized-resnets/.

45

https://iclr-blog-track.github.io/2022/03/25/unnormalized-resnets/
https://iclr-blog-track.github.io/2022/03/25/unnormalized-resnets/

Layer normalization

It is very easy to define multiple variants of BN by varying the axes along
which statistics are computed and controlled.

For example, a popular variant is layer normalization, where we mean and
variances are computed for each row (each input) independently:

µ̃i =
1
f
∑
j

[H]i,j , σ̃2i =
1
f
∑
j

([H]i,j − µ̃i)
2 .

This works also with small batch sizes (even 1) and it does not add any inter-
batch dependency. Importantly: in LN, α and β have the same shape as axis
along which we normalize.

46

Additional comments on layer normalization

Most implementations accept an axis parameter:

1 ln = tf.keras.layers.LayerNormalization(axis=[1, 2, 3])

For BN, axis is the axis that is being normalized, but the statistics are com-
puted across the other axes. For LN (and variants), axis selects the axes
across which statistics are computed. In both cases, α and β have the same
dimensionality as axis.

So, ln above will have 2hwc parameters!

47

Even more normalizations!

Figure 14: How statistics are computed with 2d data, where S indexes the spatial
dimensions (width, height). IN: instance normalization, GN: group normalization.
For LN we have two options: one value per channel, or one value per image.
Reproduced from
https://iclr-blog-track.github.io/2022/03/25/unnormalized-resnets/.

48

New layers

Residual connections

Adding layers

Consider a neural network h(x) which is performing relatively well. If we
train a deeper network f (x) = g(h(x)), we would still expect a good accuracy,
since at the very least we should have f (x) ≈ h(x) with g(x) ≈ x.

However, this was not matched by practice:8

8He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In IEEE CVPR (pp.
770-778).

49

Residual connections

In a residual network, wemodify each block f (x) (e.g., a VGG block) by adding
a skip connection:

r(x) = f (x)+x , (16)

If x and f (x) have different dimensionality, we can rescale x with a matrix
multiplication or a 1× 1 convolutive block. r(x) is called a residual block.

Residual blocks work very well with batch normalization on f (x) (the resid-
ual path), because it tends to bias the network towards the skip path at
initialization.9

9De, S. and Smith, S., 2020. Batch normalization biases residual blocks towards the identity function in deep
networks. NeurIPS.

50

Differentiating residual connections

Note that:
∂r(x) = ∂f (x) + I .

When using a residual connection, during backpropagation the gradient al-
ways flows unhindered trough the residual path, reducing any vanishing or
exploding effects:

v> [∂r(x)] = v> [∂f (x)]︸ ︷︷ ︸
Original VJP

+v .

51

Residual connections in practice

Figure 15: Source: Dive into Deep Learning, Chapter 7.6. We typically put the ReLU
outside f (x), otherwise each residual block would be positive and it would be
impossible to have a negative change.

52

Residual connections with rescaling

Figure 16: Residual block with rescaling of the skip connection. Source: Dive into
Deep Learning, Chapter 7.6.

53

Residual connections with rescaling

Figure 17: Concatenating many residual blocks, we obtain a residual network
(ResNet). Source: Dive into Deep Learning, Chapter 7.6.

54

Other families of neural networks

Figure 18: Bottleneck residual blocks (left) are very popular, as shown by their use
in novel architectures (e.g., ResNeXt, on the right).

Liu, Z., et al., 2022. A convnet for the 2020s. In IEEE/CVF CVPR (pp. 11976-11986). 55

Hubs

Note that a name like ResNet may refer to different things: a family of mod-
els, a single element of the family (e.g., ResNet-50), or a pre-trained version
of the model itself.

Many repositories (TensorFlow Hub, PyTorch Hub, pytorch-image-models,
HuggingFace Model) have appeared recently to categorize and provide easy,
open access to them.

56

ResNets as ensembles

Two stacked residual blocks can be interpreted as creating four paths through
the network, shown here with different colors:

The number of paths grow exponentially in the number of residual blocks,
which can increase the robustness of the network and make it behave like
an ensemble of shallow models (this interpretation will be very important
in transformers).

Veit, A., Wilber, M.J. and Belongie, S., 2016. Residual networks behave like ensembles of relatively shallow
networks. NeurIPS. 57

Neural ODEs

Consider a network with T residual blocks, the output can be written as:

ht = f (ht−1) + ht−1 , t = 1, . . . , T , (17)

with h0 = x. In the limit T → ∞ (infinite layers), each layer will only define
an infinitesimal displacement. Although we cannot have infinite layers, we
can handle this by conditioning a single residual block on t:

∂ht
∂t

= f (x, t) . (18)

The previous equation can be solved by an ordinary differential equation
(ODE) solver, and this class of models are called neural ODEs.

58

Reading material

I D2L: Chapter 8; UDL: Chapter 11; PPA: parts of Chapter 7.
I An example of a library devoted exclusively to image augmentations:

https://github.com/mdbloice/Augmentor.
I Recipes for putting everything together:

https://karpathy.github.io/2019/04/25/recipe/.
I An example of modern recipes:

https://arxiv.org/abs/2110.00476.

59

https://github.com/mdbloice/Augmentor
https://karpathy.github.io/2019/04/25/recipe/
https://arxiv.org/abs/2110.00476

	1
	Introduction
	A few bits of history

	Data strategies
	Data augmentation

	Optimization strategies
	Early stopping
	Regularization

	New layers
	Dropout regularization
	Batch normalization
	Residual connections

