Fondamenti di Machine Learning

Laurea Triennale in Ingegneria delle Comunicazioni (2023-2024)

Informazioni

Classroom: tutti gli studenti devono registrarsi alla pagina di Google Classroom per rimanere aggiornati.
Timetable: Martedì 8-10 (Aula 22), Giovedì 5-7 (Aula 10).

News

  • Gli orari delle lezioni saranno comunicati appena disponibile il calendario didattico del secondo semestre.

Overview del corso

Il corso è una introduzione al campo dell’apprendimento automatico (machine learning). La prima parte del corso richiama concetti necessari di Python, algebra lineare, ed ottimizzazione (nessuna conoscenza pregressa è necessaria).

Vedremo in seguito diversi algoritmi di apprendimento supervisionato: modelli lineari, reti neurali, k-NN, ed alberi decisionali. In seguito, introdurremo esempi di apprendimento non supervisionato (clustering, riduzione della dimensionalità), ed alcuni argomenti di interesse generale (preprocessamento dei dati, valutazione dei modelli, fairness, interpretabilità).

Il corso è corredato da numerosi laboratori in cui esploreremo scikit-learn, PyTorch (cenni), ed altre librerie di interesse.

Material

  Data Argomento Materiale
L0 27/02 Informazioni sul corso Slides
L1 27/02 Introduzione Slides
L2 TBD Preliminari Slides